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Advanced data analytics:
making sense of complex data

• Discover interpretable patterns
• Understand causal relationships
• Make informed predictions and decisions

• Unstructured, multimodal
numerical, text, images, videos, …

• High-dimensional, interconnected
medical, linked social graphs, …

• Growing very fast in volume
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Challenge 1: the growth of data volume

Batch processing

10s PB new data
per day for Spark jobs

100s TB new data
per day for a single job

Video stream analytics Machine learning

100+M user 
ratings of 17,770 movies

14+M images of 
1,000 categories
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Challenge 2: the complexity of analytics

10K hyperparameter 
combinations to explore [4]

600K training 
steps to converge [3]

Batch processing

>50% batch jobs 
have multiple stages 

10x larger than 
available memory

Video stream analytics Machine learning

30GFlops to 
recognize objects in image [2]

1Fps object
tracking on 8-core node [1]

[1] VOT Challenge 2015 Results  [2] Simonyan et al. 2014 5[3] He et al. 2015  [4] Maclaurin et al. 2015



Challenge 3: limited cluster resources

• Our rapidly improving hardware technology is coming to a “grinding halt” [1]

• DRAM and disk capacity:

double once in next decade [2]

• CPU performance:

double in two decades [2]

• Moore’s Law is ending…

6
[1] Stoica et al. 2017

Length and Number of Transistors Bought Per $ 

(Figure Source: Linley Group)[2] Hennessy & Patterson. 6th Edition. 2017



Datacenter resource scheduling

• Treat tasks as black boxes
• Based on general principles

• fairness, locality, load 
balancing, …
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New opportunities to optimize scheduling

• Video stream analytics
• quality-resource-delay tradeoffs between queries

8

Occ
up

yin
g t

he
 cl

ou
d!

live analytics deployed on public & private cloud

TPU,      Big Basin in datacenters for ML jobs

largest          deployment known has 8,000 nodes

• Machine learning
• iterative training process with diminishing returns

• Batch processing
• large amount of fragmented I/O in multi-stage jobs



In this talk
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VideoStorm: Live Video 
Analytics [NSDI ’17]

SLAQ: Quality-Driven ML 
Scheduling [SoCC ’17 !]

Riffle: Optimized Shuffle 
Service [EuroSys ’18]



Riffle: Optimized Shuffle Service for 
Large-Scale Data Analytics

Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, Michael J. Freedman
European Conference on Computer Systems (EuroSys ’18)



Batch analytics systems are widely used

• Large-scale SQL queries
• Custom batch jobs
• Pre-/Post-processing for ML

At

10s of PB new data is generated 
every day for batch processing

100s of TB data is added to be 
processed by a single job
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Batch analytics jobs: logical graph

map filter

map

join,
groupBy filter

narrow dependency wide dependency
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Batch analytics jobs: DAG execution plan

Stage 1 Stage 2

• Shuffle: all-to-all communication between stages
• >10x larger than available memory, strong fault tolerance requirements

→ on-disk shuffle files
13



The case for tiny tasks

• Benefits of slicing jobs into small tasks
• Improve parallelism [Tinytasks HotOS 13] [Subsampling IC2E 14] [Monotask SOSP 17]

• Improve load balancing [Sparrow SOSP 13]

• Reduce straggler effect [Dolly NSDI 13] [SparkPerf NSDI 15]
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The case against tiny tasks

• Engineering experience often argues against running too many tasks
• Medium scale → very large scale (10x larger than memory space)
• Single-stage jobs → multi-stage jobs (> 50%)

Although we were able to run the Spark job with such a high 
number of tasks, we found that there is significant performance 

degradation when the number of tasks is too high.

[*] Apache Spark @Scale: A 60 TB+ Production Use Case. https://tinyurl.com/yadx29gl
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Shuffle I/O grows quadratically with data
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• Large amount of fragmented I/O requests
• Adversarial workload for hard drives!
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Strawman: fix number of tasks in a job

• Tasks spill intermediate data to disk if data splits exceed memory capacity
• Larger task execution reduces shuffle I/O, but increases spill I/O
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Strawman: tune number of tasks in a job

• Need to retune when input data volume changes for each individual job
• Bulky tasks can be detrimental [Dolly NSDI 13] [SparkPerf NSDI 15] [Monotask SOSP 17]

• straggler problems, imbalanced workload, garbage collection overhead
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Small Tasks

Bulky Tasks

Large Amount of
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Shuffle I/O



Riffle: optimized shuffle service

• Riffle shuffle service: a long running instance on each physical node
• Riffle scheduler: keeps track of shuffle files and issues merge requests

Worker NodeWorker NodeTaskTaskTasks Worker Machine

Task Task Task Task

File System

ExecutorExecutor

Riffle Shuffle Service

Driver

Job / Task 
Scheduler

Riffle 
Merge 

Scheduler

assign

report task
statuses

report merge
statuses

send merge 
requests
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Riffle: optimized shuffle service

• When receiving a merge request

1. Combines small shuffle files into 
larger ones

2. Keeps original file layout

• Reducers fetch fewer, large blocks
instead of many, small blocks

Optimized Shuffle Service

merge 
request

map

map

map

reduce

reduce

reduce

reduce

reduce

reduce

reduce

map

map

map

merge 
request

Application Driver
Merge Scheduler

Worker-Side Merger
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Results with merge operations on synthetic workload

• Riffle reduces number of fetch requests by 10x
• Reduce stage -393s, map stage +169s → job completes 35% faster
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Best-effort merge

• Observation: slowdown in map stage is mostly due to stragglers

• Best-effort merge: mixing merged and unmerged shuffle files
• When number of finished merge requests is larger than a user 

specified percentage threshold, stop waiting for more merge results

23
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Results with best-effort merge

• Reduce stage -393s, map stage +52s → job completes 53% faster
• Riffle finishes job with only ~50% of cluster resources!
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Additional enhancements

• Handling merge operation failures
• Efficient memory management
• Balance merge requests in clusters
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Experiment setup

• Testbed: Spark on a 100-node cluster
• Each node has 56 CPU cores, 256GB RAM, 10Gbps Ethernet links
• Each node runs 14 executors, each with 4 cores, 14GB RAM

• Workload: 4 representative production jobs at Facebook

Correctness with compressed and sorted data.
Compression is commonly used to reduce I/O overhead
when storing files on disks. The data typically needs
to go through compression codecs when transforming
between its on-disk format and in-memory representa-
tion. Riffle concatenates file blocks directly in their
compressed, on-disk format to avoid compression en-
coding and decoding overhead. This is possible be-
cause the data analytics frameworks typically use con-
catenation friendly compression algorithms. For exam-
ple, LZ4 [41] and Snappy [42] are commonly used in
Spark and Hadoop for intermediate and result files.

Merging the raw block files breaks the relative order-
ing of the key-value items in the blocks of merged shuffle
files. If a reduce task does require the data to be sorted, it
cannot assume the data on the mapper side is pre-sorted.
Sorting in Spark (default) and Hadoop (configurable) on
reduce side uses the TimSort algorithm [43], which takes
advantage of the ordering of local sub-blocks (i.e., seg-
ments of the concatenated blocks in merged shuffle files)
and efficiently sorts them. The algorithm has the same
computational complexity as Merge Sort and in practice
leads to very good performance [44]. The sorting mech-
anism ensures that reducer tasks will get the correctly
ordered data even with the Riffle merge operations. In
addition, since merge will not affect the internal ordering
of data in sub-blocks, the sorting time with Riffle will be
the same as the no merge case.

5 Implementation

We implemented Riffle with about 4,000 lines of Scala
code added to Apache Spark 2.0. Riffle’s modification
is completely transparent to the high-level programming
APIs, so it supports running unmodified Spark applica-
tions. We implemented Riffle to work on both traditional
clusters with collocated computation and storage, and the
new-generation disaggregated clusters. Riffle as well as
its policies and configurations can be easily changed on
a per-job basis. It is deployed and running various Spark
batch analytics jobs at OSN.
Garbage collection. Storage space, compared to other
resources, is much cheaper in the system. As described
in §4.3, Riffle keeps both unmerged and merged shuffle
output files on disks for better fault tolerance. Both types
of shuffle output files share the lifetime of the running
Spark job, and are cleaned up by the resource manager
when the job ends.

6 Evaluation

In this section, we present evaluation results on Riffle.
We demonstrate that Riffle significantly improves the I/O

Data Map Reduce Block Description

1 167.6 GB 915 200 983 K ad metrics
2 1.15 TB 7,040 1,438 120 K measurement
3 2.7 TB 8,064 2,500 147 K measurement
4 267 TB 36,145 20,011 360 K ad metrics

Table 1: Workload and datasets for 4 production jobs used
for Riffle evaluation. Each row shows the total size of shuf-
fle data in a job, the number of tasks in its map and reduce
stages, and the average size of shuffle blocks.

efficiency by increasing the request sizes and reduces
the IOPS requirement on the disks, and scales to pro-
cess 100s of TB of data and reduces the end-to-end job
completion time and total resource usage.

6.1 Methodology

Testbed. We test Riffle with Spark on a disaggregated
cluster (see §4.4). The computation blade of the cluster
consists of 100 physical nodes, each with 56 CPU cores,
256GB RAM (with 200GB allocated to Spark execu-
tors), and connected with 10Gbps Ethernet links. Each
physical node is further divided into 14 executors, each
with 4 CPU cores and 14 GB memory. In total, the jobs
run on 1,414 executors. 8GB memory on each physi-
cal node is reserved for in-memory buffering of the Rif-
fle merger instance. The storage blade provides a dis-
tributed file system interface, with 100MB/s I/O speed
for sequential access of a single file. Our current deploy-
ment of file system supports 512KB unit I/O operation.
We also use emulated IOPS counters in the file system to
show the performance benefit when the storage is tuned
with larger optimal I/O sizes.
Workloads and datasets. We used four production
jobs at OSN with different sizes of shuffle data, rep-
resenting small, medium and large scale data process-
ing jobs, as shown in Table 1. To isolate the I/O be-
havior of Riffle, in §6.2 we first show the experiment
results on synthetic workload closely simulating Job 3:
the synthetic job generates 3TB random shuffle data and
uses 8,000 map tasks and 2,500 reduce tasks. With
vanilla Spark, each shuffle output file, on average, has
a 3TB/8000/2500 = 150KB block for each reduce task
(approximating the 147KB block size in Job 3). With-
out complex processing logic, experiments with the syn-
thetic job can demonstrate the I/O performance improve-
ment with Riffle. We further show the end-to-end perfor-
mance with the four production jobs in §6.3.
Metrics. Shuffle performance is directly reflected in
the reduce task time, since each reduce task needs to first
collect all the blocks of a certain partition from shuffle
files, before it can start performing any operations. To
show the performance improvement of Riffle, we focus
on measuring (i) task, stage, and job completion time,

9
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Reduction in shuffle I/O requests

• Riffle reduces # of I/O requests by 5--10x for medium / large scale jobs
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Savings in end-to-end job completion time

• Map stage time is almost not affected (with best-effort merge)
• Reduces job completion time by 20--40% for medium / large jobs
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Part I Conclusion

• Shuffle I/O becomes scaling bottleneck for multi-stage jobs

• Efficiently schedule merge operations, mitigate merge stragglers

• Riffle is deployed for Facebook’s production jobs processing PBs of data
29
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Live Video Analytics at Scale with 
Approximation and Delay-Tolerance

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, 
Matthai Philipose, Paramvir Bahl, Michael J. Freedman

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17)



Intelligent Traffic System AMBER Alert

Electronic Toll Collection

31

Video Doorbell

Video analytics queries
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transform
count object

transform
track object

transform
decode

transform
detect object

Video query: a pipeline of transforms

• Example: traffic counter pipeline
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Video queries are expensive in resource usage

transform
count object

transform
track object

transform
decode

transform
b/g subtractExpen

sive

• When processing thousands of video streams in multi-tenant clusters
• How to reduce processing cost of a query?
• How to manage resources efficiently across queries?

33

• Example: traffic counter pipeline



Vision algorithms are intrinsically approximate

• License plate reader → window size
• Car tracker → mapping metric
• Object classifier → DNN model

• Query configuration: a combination of knob values

Frame Rate Resolution Window Size Mapping Metric

• Knobs: parameters / implementation choices for transforms

34



Knobs impact quality and resource usage

Frame Rate Resolution

720p3

1 480p

Quality=0.93, CPU=0.54

Quality=0.57, CPU=0.09
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Tuning the knobs all together

• Orders of magnitude cheaper resource demand for little quality drop

• No analytical models to predict resource-quality tradeoff
• Different from approximate SQL queries
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Diverse quality and lag requirements

Quality?

Lag?

High

Hours

Moderate

Few Seconds

High

Few Seconds

Intelligent Traffic AMBER AlertToll Collection

Lag: time difference between frame arrival and frame processing
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Decide configuration and resource allocation to 
maximize quality and minimize lag 

within the resource capacity

Configuration  . Quality

LagResource Allocation  .

Goal
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Video analytics framework: Challenges

1. Many knobs → large configuration space
• No known analytical models to predict quality and resource impact

2. Diverse requirements on quality and lag
• Hard to configure and allocate resources jointly across queries

Configuration  . Quality

LagResource Allocation  .
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VideoStorm: Solution Overview

Profiler
query Schedulerresource-quality

profile

utility function

offline online

Workers
Builds model

Reduces config
space

Trades off 
quality and lag 
across queries
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Offline: query profiling

• Profile: configuration ⟹ resource, quality
• Ground-truth: labeled dataset or results from golden configuration
• Explore configuration space, compute average resource and quality
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Offline: Pareto boundary of configuration space

• Pareto boundary: optimal configurations in resource efficiency and quality

• Cannot further increase one without reducing the other

• Orders of magnitude reduction in config. search space for scheduling
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VideoStorm: Solution Overview

Profiler
query Schedulerresource-quality

profile

utility function

offline online

Workers

43



Online: utility function and scheduling

• Utility function: encode goals and sensitivities of quality and lag
• Users set required quality and tolerable lag
• Reward additional quality, penalize higher lag

• Schedule for two natural goals
• Maximize the minimum utility – (max-min) fairness
• Maximize the total utility – overall performance

• Allow lag accumulation during resource shortage, then catch up

higher quality

higher lag
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VideoStorm Evaluation Setup

VideoStorm Manager
Profiler + Scheduler

100 Worker Machines

• Platform:
• Microsoft Azure cluster
• Each worker contains 4 cores 

of the 2.4GHz Intel Xeon 
processor and 14GB RAM

• Four types of vision queries:
• license plate reader
• car counter
• DNN classifier
• object tracker
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Experiment Video Datasets

• Operational traffic cameras in Bellevue and Seattle 

• 14–30 frames per second, 240P–1080P resolution
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Resource allocation during burst of queries

• Start with 300 queries:
① Lag Goal=300s, Low-Quality 60%
② Lag Goal=20s, Low-Quality 40%

• Burst of 150 seconds (50 – 200):
③ 200 LPR queries (AMBER Alert)
Lag Goal=20s, High-Quality

• VideoStorm scheduler:
③ dominate resource allocation
run ② with lower quality
significantly delay ①
All meet quality and lag goals
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Resource allocation during burst of queries

• Start with 300 queries:
① Lag Goal=300s, low-quality ~60%
② Lag Goal=20s, low-quality ~40%

• Burst of 150 seconds (50 – 200):
③ 200 LPR queries (AMBER Alert)
High-Quality, Lag Goal=20s

• VideoStorm scheduler:
③ dominate resource allocation
significantly delay ①
run ② with lower quality
All meet quality and lag goals
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• Compare to a fair scheduler with varying burst duration:
• Quality improvement: up to 80%
• Lag reduction: up to 7x
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VideoStorm Scalability

• Frequently reschedule and reconfigure in reaction to changes of queries

• Even with thousands of queries, VideoStorm makes rescheduling 
decisions in just a few seconds
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Related Work

• Video query optimization
• Optasia [SoCC ’16], NoScope [VLDB ’17], EVA [SysML ’18]
• Share common operators and reuse results from different queries

• Video systems on cloud-edge architecture
• Vigil [MobiCom ’15], Firework [TPDS ’18], Chameleon [SIGCOMM ’18]
• Placing tasks / operators of a processing pipeline to different locations

50



Part II Conclusion

• VideoStorm explores quality-resource-lag tradeoff in video queries

• Offline profiler: efficient estimates resource-quality profiles
• Online scheduler: optimizes jointly for quality and lag of queries

• Significant improvement in achieved quality and lag
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Deployment 
at Bellevue 

Traffic 
Department
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SLAQ: Quality-Driven Scheduling for 
Distributed Machine Learning

Haoyu Zhang*, Logan Stafman*, Andrew Or, Michael J. Freedman
ACM Symposium on Cloud Computing (SoCC ’17)

! Best Paper Award



ML algorithms are approximate

• ML model: a parametric transformation

! "#$
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ML algorithms are approximate

• ML model: a parametric transformation

• maps input variables ! to output variables "
• typically contains a set of parameters #
• Loss function: discrepancy of model output and ground truth

• Quality: how well model maps input to the correct output

! "$%
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Training ML models: an iterative process

• Training algorithms iteratively minimize a loss function
• E.g., stochastic gradient descent (SGD), L-BFGS
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Training ML models: an iterative process

• Quality improvement is subject to diminishing returns
• More than 80% of work done in 20% of time
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Exploratory ML training: not a one-time effort

• Train model multiple times for exploratory purposes
• Provide early feedback, direct model search to high quality models

Collect Data

Extract Features

Train ML 
Models

Adjust Feature Space

Tune Hyperparameters

Restructure Models
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How to schedule multiple training jobs on shared cluster?

• Problems with resource fairness scheduling
• Jobs in early stage: could benefit a lot from additional resources
• Jobs almost converged: make only marginal improvement
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SLAQ: quality-aware scheduling

• Intuition: in exploratory ML training, more resources should be allocated to 
jobs that have the most potential for quality improvement 
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Solution Overview

Normalize 
quality metrics

Predict quality 
improvement

Quality-driven 
scheduling
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Universal quality measurement metric

62

• Accuracy?
• Precision, F1 Score, Area Under Curve, …
✘ Not applicable to non-classification models

• Loss function values?
• Square loss, smoothed hinge loss, logistic loss, cross entropy loss, …
✘ Do not have comparable magnitudes or known ranges

• Reduction of loss values (∆Loss)
✓ Always decrease to 0 as the loss function value converges



Normalizing quality metrics

• Quality: normalized change of loss values w.r.t. largest change so far

• Currently does not support some non-convex optimization algorithms
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Training iterations: loss prediction

• Previous work: offline profiling / analysis [Ernest NSDI 16] [CherryPick NSDI 17]

• Overhead for frequent offline analysis is huge

• Strawman: use last ∆Loss as prediction for future ∆Loss

• SLAQ: online prediction using weighted curve fitting
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Scheduling approximate ML training jobs

• Predict how much quality can be improved when assign X workers to jobs
• Reallocate workers to maximize quality improvement

WorkerJob #1

Job #2

Job #3

Scheduler

1

Worker3

Worker2

Worker3

3

2

1

1

Prediction
Resource 
Allocation
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Experiment setup

• Representative mix of training jobs with
• Compare against a work-conserving fair scheduler 

Algorithm Acronym Type Optimization Algorithm Dataset

K-Means K-Means Clustering Lloyd Algorithm Synthetic
Logistic Regression LogReg Classification Gradient Descent Epsilon [33]
Support Vector Machine SVM Classification Gradient Descent Epsilon
SVM (polynomial kernel) SVMPoly Classification Gradient Descent MNIST [34]
Gradient Boosted Tree GBT Classification Gradient Boosting Epsilon
GBT Regression GBTReg Regression Gradient Boosting YearPredictionMSD [35]
Multi-Layer Perceptron Classifier MLPC Classification L-BFGS Epsilon
Latent Dirichlet Allocation LDA Clustering EM / Online Algorithm Associated Press Corpus [36]
Linear Regression LinReg Regression L-BFGS YearPredictionMSD

Table 1: Summary of ML algorithms, types, and the optimizers and datasets we used for testing.

4.2 Measuring and Predicting Loss

After unifying the quality metrics for different jobs,
we proceed to allocate resources for global quality im-
provement. When making a scheduling decision for a
given job, SLAQ needs to know how much loss reduction
the job would achieve by the next epoch if it was granted
a certain amount of resources. We derive this informa-
tion by predicting (i) how many iterations the job will
have completed by the next epoch (§4.2.1), and (ii) how
much progress (i.e., loss reduction) the job could make
within these iterations (§4.2.2).

Prediction for iterative ML training jobs is different
from general big-data analytics jobs. Previous work [15,
38] estimates job’s runtime on some given cluster re-
sources by analyzing the job computation and communi-
cation structure, using offline analysis or code profiling.
As the computation and communication pattern changes
during ML model configuration tuning, the process of
offline analysis needs to be performed every time, thus
incurring significant overhead. ML prediction is also
different from the estimations to approximate analytical
SQL queries [16, 17] where the resulting accuracy can be
directly inferred with the sampling rate and analytics be-
ing performed. For iterative ML training jobs, we need to
make online predictions for the runtime and intermediate
quality changes for each iteration.

4.2.1 Runtime Prediction

SLAQ is designed to work with distributed ML training
jobs running on batch-processing computational frame-
works like Spark and MapReduce. The underlying
frameworks help achieve data parallelization for training
ML models: the training dataset is large and gets parti-
tioned on multiple worker nodes, and the size of mod-
els (i.e., set of parameters) is comparably much smaller.
The model parameters are updated by the workers, ag-
gregated in the job driver, and disseminated back to the
workers in the next iteration.

SLAQ’s fine-grained scheduler resizes the set of work-
ers for ML jobs frequently, and we need to predict the it-
eration of each job’s iteration, even while the number and

set of workers available to that job is dynamically chang-
ing. Fortunately, the runtime of ML training—at least
for the set of ML algorithms and model sizes on which
we focus—is dominated by the computation on the par-
titioned datasets. SLAQ considers the total CPU time of
running each iteration as c · S, where c is a constant de-
termined by the algorithm complexity, and S is the size
of data processed in an iteration. SLAQ collects the ag-
gregate worker CPU time and data size information from
the job driver, and it is easy to learn the constant c from
a history of past iterations. SLAQ thus predicts an itera-
tion’s runtime simply by c ·S/N, where N is the number
of worker CPUs allocated to the job.

We use this heuristic for its simplicity and accu-
racy (validated through evaluation in §6.3), with the as-
sumption that communicating updates and synchroniz-
ing models does not become a bottleneck. Even with
models larger than hundreds of MBs (e.g., Deep Neu-
ral Networks), many ML frameworks could significantly
reduce the network traffic with model parallelism [39] or
by training with relaxed model consistency with bounded
staleness [40], as discussed in §7. Advanced runtime pre-
diction models [41] can also be plugged into SLAQ.

4.2.2 Loss Prediction

Iterations in some ML jobs may be on the order of
10s–100s of milliseconds, while SLAQ only schedules on
the order of 100s of milliseconds to a few seconds. Per-
forming scheduling on smaller intervals would be dis-
proportionally expensive due to scheduling overhead and
lack of meaningful quality changes. Further, as disparate
jobs have different iteration periods, and these periods
are not aligned, it does not make sense to try to schedule
at “every” iteration of the jobs.

Instead, with runtime prediction, SLAQ knows how
many iterations a job could complete in the given
scheduling epoch. To understand how much quality im-
provement the job could get, we also need to predict the
loss reduction in the following several iterations.

A strawman solution is to directly use the loss reduc-
tion obtained from the last iteration as the predicted loss
reduction value for the following several iterations. This
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Evaluation: cluster-wide quality and time

• SLAQ’s average loss is 73% lower 
than that of the fair scheduler
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(95%) loss reduction by 45% (30%)
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Part III Conclusion

• SLAQ leverages the approximate and iterative ML training process

• Highly tailored prediction for iterative job quality
• Allocate resources to maximize quality improvement

• SLAQ achieves better overall quality and end-to-end training time
68
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Conclusion
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Research Summary

• Resource management for advanced data analytics
• Live Video Analytics at Scale with Approximation and Delay-Tolerance [NSDI ’17]
• SLAQ: Quality-Driven Scheduling in Distributed Machine Learning [SoCC ’17 !][SysML ’18]
• Riffle: Optimized Shuffle Service for Large-Scale Data Analytics [EuroSys ’18]

• Network-assisted system acceleration
• NetCache: Balancing Key-Value Stores with Fast In-Network Caching [SOSP ’17]
• NetChain: Scale-Free Sub-RTT Coordination [NSDI ’18 !]

• SDN fault tolerance
• Ravana: Controller Fault-Tolerance in Software-Defined Networks [SOSR ’15]
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Thanks!

Haoyu Zhang
http://www.haoyuzhang.org


