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 Unstructured, multimodal

numerical, text, images, videos, ...
» High-dimensional, interconnected

medical, linked social graphs, ...
« Growing very fast in volume

* Discover interpretable patterns
« Understand causal relationships
« Make informed predictions and decisions



Resource

Complexity




Challenge 1: the growth of data volume

Batch processing

103 PB new data

per day for Spark jobs

1003 TB new data

per day for a single job

Video stream analytics

TECHNOLOQGY | Fri Jun 21

NYPD expands surveillance net to
fight crime as well as terrorism |

Cameras and loT: Going from smart
to intelligent

Microsoft looks to stop bike crashes before they
happen, testing Minority Report-style predictive
intelligence

BY LISA STIFFLER on October 14, 2015 at 1:00 pm

24 Gormers | 1 Stare 716 | Wweet | Dsvare 59 || BRARY] mEmat.

Microsoft engineers and City of Bellevue planners have a sci-fi inspired strategy for

|_1,| curbing bike and pedestrian injuries on city streets: By using video analytics, they

want to predict and prevent crashes before they happen.

“This is like 'Minority Report,' " said Bellevue senior transportation planner Franz
Loewenherz, referring to the 2002 film in which Tom Cruise preemptively stops

t( crime. “We're trying to get out in front of the collisions. We can take a corrective
measure before someone gets hurt.”

Machine learning

NETELTX

100*M user

ratings of 17,770 movies

IMAGENE |

1 4+M images of

1,000 categories




Challenge 2: the complexity of analytics

Batch processing Video stream analytics Machine learning

Spo‘l’(\:z =-@®
600K training

>50% patch jobs 1FpS object
steps to converge P!

have multiple stages tracking on 8-core node 1]

1OX larger than 3OG FIOpS to

available memory recognize objects in image

1 OK hyperparameter

combinations to explore 1]

[1'VOT Challenge 2015 Results 2 Simonyan et al. 2014 Bl He et al. 2015 ¥ Maclaurin et al. 2015 5



Challenge 3: limited cluster resources

 Our rapidly improving hardware technology is coming to a “grinding halt” []

%M

20nm

« DRAM and disk capacity:
double once in next decade 4

2010

16nm
2012 2014* 2015*

« CPU performance:
double in two decades 4

* Moore’s Law is ending...

130nm
2004

Nanometres (nm)
Length and Number of Transistors Bought Per $
[l Stoica et al. 2017  PIHennessy & Patterson. 6" Edition. 2017 2002 (Figure Source: Linley Group) 6



Datacenter resource scheduling

Cluster Manager  Treat tasks as black boxes
1 Job- I_e_vgﬁgggl_e[ | » Based on general principles
allocate executors‘/ \ » fairness, Iocality, load
__Job 1 _ G balancing, ...
' Task-level ' Task-level
'Scheduler ' Scheduler

—— — — — o — —— — e

assign tasks

Executor

Executor | | Executor Executor

Worker Machine 1 Worker Machine n




New opportunities to optimize scheduling

, m - Batch processing
= * large amount of fragmented 1/O in multi-stage jobs

largest deployment known has 8,000 nodes

* Video stream analytics
 quality-resource-delay tradeoffs between queries

m live analytics deployed on public & private cloud

@ - Machine learning
* iterative training process with diminishing returns

MACHINE
LEARNING

» TPU, ¥ Big Basin in datacenters for ML jobs



In this talk

Cluster Manager VideoStorm: Live Video
| Job-level Scheduler — | Analytics [NsDI17]
Sl il
allocate executorV \
T--J-l‘zfjl-l- T_¥9k‘2l-”1-l- SLAQ: Quality-Driven ML
' Task-level ' Task-level , ,
' Scheduler ' Scheduler! Scheduling [socC 17 ¥

assign tasks

{ } { } { } } Riffle: Optimized Shuffle
Executor

Executor | | Executor Executor Service [EuroSys '18]

Worker Machine 1 Worker Machine n




Riffle: Optimized Shuffle Service for
Large-Scale Data Analytics

Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, Michael J. Freedman

European Conference on Computer Systems (EuroSys ’18)

n facebook
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Batch analytics systems are widely used

 Large-scale SQL queries S APACHE C’QZ

« Custom batch jobs
* Pre-/Post-processing for ML

At facebook
10s of PB newdatais generated

every day for batch processing

100s of 1B datais added to be

processed by a single job




Batch analytics jobs: logical graph

wide dependency
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Batch analytics jobs: DAG execution plan

« Shuffle: all-to-all communication between stages
« >10x larger than available memory, strong fault tolerance requirements
— on-disk shuffle files

13



The case for tiny tasks

----------------------------
. ..

L 4 ‘0
llllllllllllllllllllllllllll

 Benefits of slicing jobs into small tasks
* Improve parallelism [Tinytasks HotOS 13] [Subsampling IC2E 14] [Monotask SOSP 17]
» Improve load balancing [Sparrow SOSP 13]
« Reduce straggler effect [Dolly NSDI 13] [SparkPerf NSDI 15]

14



The case against tiny tasks

Although we were able to run the Spark job with such a high

number of tasks, we found that there is significant performance
degradation when the number of tasks is too high.

* Engineering experience often argues against running too many tasks
* Medium scale — very large scale (10x larger than memory space)
 Single-stage jobs — multi-stage jobs (= 50%)

['l Apache Spark @Scale: A 60 TB+ Production Use Case. https://tinyurl.com/yadx29g|
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https://tinyurl.com/yadx29gl

Shuffle I/O grows quadratically with data

—&— Shuffle Time =4 - /O Request

(o]
- o
§ 4000 —
2 L1120 =
© 3000 c
= A 3
i= 2000 A 180 3
L, @
£ 1000+ 40 9
5 3
@ o . -0

0 5000 10000
Number of Tasks

« Large amount of fragmented I/O requests
« Adversarial workload for hard drives!

Size (KB)

—&— Shuffle Fetch Size

1500 A
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0
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Number of Tasks
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Strawman: fix number of tasks in a job

L

_

« Tasks spill intermediate data to disk if data splits exceed memory capacity
 Larger task execution reduces shuffle 1/O, but increases spill 1/0

17



Strawman:

* Need to retune when input data volume changes for each individual job

tune number of tasks in a job

2 Shuffle Spill
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« Bulky tasks can be detrimental [Dolly NSDI 13] [SparkPerf NSDI 15] [Monotask SOSP 17]
« straggler problems, imbalanced workload, garbage collection overhead
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Small Tasks

Bulky Tasks

t A
y -

Large Amount of

Fragmented Shuffle I/Ca™>

Fewer, Sequential
Shuffle 1/0

lly i
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\ 1'74).’:‘\ /
- o % l\"\‘-. -
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Riffle: optimized shuffle service

. ) C
Driver | assign (Tasks) [ Jyorker Machine

»

'_S_c_h_e_dyl_qr_. ~ statuses EXchtoq . E)gecutor
send merge |~

. Riffle | >
' Merge ! requests D"'DD@ File System

report merge

(Z2E e J T statuses Riffle Shuffle Service

'Job / Taski| reporttask ||| Task Task H{ Task  Task |

* Riffle shuffle service: a long running instance on each physical node
 Riffle scheduler: keeps track of shuffle files and issues merge requests



Riffle: optimized shuffle service

Application Driver
* When receiving a merge request Merge Scheduler

11

Worker-Side Merger

1. Combines small shuffle files into
larger ones =
2. Keeps original file layout =
Crep >
 Reducers fetch fewer, large blocks —
instead of many, small blocks =
Crep >

Optimized Shuffle Service

21



Results with merge operations on synthetic workload

—&— Read Block Size =—#&— Number of Reads —&— Map Stage —+— Reduce Stage
6000 8000 E 500
~ 400"
0 4500- 6000 (3 o
< - & 3001
3000 1 4000
% o £ 200-
1500 1 2000 & F 100,
e
0 - - 0 0 . . . . .
No Merge 5 10 20 40 No Merge 5 10 20 40
N-Way Merge N-Way Merge

* Riffle reduces number of fetch requests by
* Reduce stage , map stage +169s — job completes
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Best-effort merge

« Observation: slowdown in map stage is mostly due to stragglers

Treadt | NN | WD () —
I
Thread2 | N | WS D G ;
Threads | N WD WD (L0 .
Merger I . - — T

» Best-effort merge: mixing merged and unmerged shuffle files

 When number of finished merge requests is larger than a user
specified percentage threshold, stop waiting for more merge results

23



Results with best-effort merge

—&— Read Block Size —#&— Number of Reads

500 -

—o— Map Stage —4+— Reduce Stage

6000 -
—_— —~ 4001
0 4500 o
X & 3001
3000 1
g 2 20
N 1500 P 100/
0 . . ol | | | |
No Merge 5 10 20 40 No Merge 5 10 20 40
N-Way Merge N-Way Merge
-------- Best-effort merge (95%)

* Reduce stage

, map stage +52s — job completes

» Riffle finishes job with only ~50% of cluster resources!

24



Additional enhancements

« Handling merge operation failures

« Efficient memory management

« Balance merge requests in clusters

Buffered Read

Block 65

Block 66

] _
Block 65 Block 65
T Block 66 ]

J-Blockg7]. | Block6r

- .

Block 67

f

Block 65-1

Block 65-2

Block 65-m

Block 66-2

b Block. 56411

Block 66-m

oJLM palayng

request 1_.--- ~__ FIBMN Merger

(Job 1 Driver]<:;j:/ W Vierger )
G zoner) . FENNN v

X
P | | |

S

| Job  Driver k<

request I ~~~._
> EII. Merger
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Experiment setup

» Testbed: Spark on a 100-node cluster

« Each node has 56 CPU cores, 256GB RAM, 10Gbps Ethernet links
« Each node runs 14 executors, each with 4 cores, 14GB RAM

» Workload: 4 representative production jobs at Facebook

Data Map Reduce Block
I 167.6GB 915 200 983 K
2 1.15TB 7,040 1,438 120 K
3 27TB 8,064 2,500 147 K
4 267 TB 36,145 20,011 360 K




Reduction in shuffle I/O requests

4 NoMerge 4 512K BX 1M £ 2M KX 4M

S 20 800
2 151 § 600
(b}

5 X

3 10 400
i <

O & g 2@ | 1200
= X

q:_S 0 = E‘Egl\_‘iv—v mm / 0
(',C) Job1 Job2 Job3 Job4

« Riffle reduces # of I/O requests by 5--10x for medium / large scale jobs



Savings in end-to-end job completion time

21 NoMerge [ 512K B 1M [0 2M EX 4M

S 100 B 1200
3T

a ,
XS >“§ | 800
< 5 DU
» © 50 - /R
i e
s E URITE DIURS
s 7 N1
o 0

Job1 Job2 J Job4

« Map stage time is almost not affected (with best-effort merge)
« Reduces job completion time by 20--40% for medium / large jobs

28



Part | Conclusion

« Shuffle I/O becomes scaling bottleneck for multi-stage jobs

« Efficiently schedule merge operations, mitigate merge stragglers

merge
request -

« Riffle is deployed for Facebook’s production jobs processing PBs of data

Z1 NoMerge [4 512K B 1M [ 2M EX 4M

100 - - 1200

N 800
w il -

Job1 Job?2 Job3 Job4

—]

|
NNONCNCNCN

NNC

Total Task Execution
Time / Days
(@)
o

o
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Live Video Analytics at Scale with
Approximation and Delay-Tolerance

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, Michael J. Freedman

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17)
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Video analytics queries

V- "%
" L,.._-_.J:‘ ik _: :' gg
ALERY. (o=
| : 4 2P
ALERY:- |0 VEN®

~_ Intelligent Traffic System AMBER Alert = 5\

—

| TOLL-BY-PLATE |

Electronic Toll Collection  Video Doorbell

o, i ) =
-

v !
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Video query: a pipeline of transforms

« Example: traffic counter pipeline

\ —) transform
: decode

transform
detect object

transform
track object

transform

count object

32




Video queries are expensive in resource usage

« Example: traffic counter pipeline

transform
count object

\& —) transform
15 % decode »

* When processing thousands of video streams in multi-tenant clusters
 How to reduce processing cost of a query?
 How to manage resources efficiently across queries?

33



Vision algorithms are intrinsically approximate

« Knobs: parameters / implementation choices for transforms

¢ Y
& N &
N o N

Frame Rate Resolution Window Size Mapping Metric

‘

~

A ' 4
~ s
- ~

&

* License plate reader — window size
« Car tracker — mapping metric
* Object classifier — DNN model
« Query configuration: a combination of knob values

34



Knobs impact quality and resource usage

«
N .3 _720p
& N

Frame Rate Resolution

A} ‘ Y 4
1o . 4380p.
# ~

Quality=0.57, CPU=0.09

35



Tuning the knobs all together

License Plate Reader

0.8
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© 0. S 2
- > ‘
S LK <

KX

04 1 10 100 1000
Resource Demand [CPU cores, log scale]

« Orders of magnitude cheaper resource demand for little quality drop

* No analytical models to predict resource-quality tradeoff
 Different from approximate SQL queries
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Diverse quality and lag requirements

_ag: time difference between frame arrival and frame processing

| TOLL-BY-PLATE | “

Toll Collection Intelligent Traffic ~ AMBER Alert

Quality? High Moderate High

Lag? Hours Few Seconds Few Seconds

37



Goal

Decide configuration and resource allocation to
maximize quality and minimize 20
within the resource capacity

38



Video analytics framework: Challenges

1. Many knobs — large configuration space

* No known analytical models to predict quality and resource impact
2. Diverse requirements on quality and lag

 Hard to contigure and allocate resources jointly across queries

39



VideoStorm: Solution Overview

utility function

>

Trades off
Schq quality and lag
across queries

| offline o

online

40



Offline: query profiling

* Profile: configuration = resource, quality
« Ground-truth: labeled dataset or results from golden configuration
« Explore configuration space, compute average resource and quality

0.8

I ?) 0.6 X\ XY

- 5 ® is strictly
= Oos better than

S > . .

> = in quality
ES Eg 0.2 Cj

2 3 and resource
S efficiency

. 100 1000
Resource Demand [CPU cores, log scale]

&ammm more efficient 41



Offline: Pareto boundary of configuration space

« Pareto boundary: optimal configurations in resource efficiency and quality
« Cannot further increase one without reducing the other
* Orders of magnitude reduction in config. search space for scheduling

0.8

=
o

Pareto optimal

higher quality w—)
Quality of Result

100

) 1000
Resource Demand [CPU cores, log scale]

&ammm more efficient 42



VideoStorm: Solution Overview

4{ Profiler JA-@

resource-quality
profile

offline

utility function

4 )
Scheduler
F\ /
online

Workers

43



Online: utility function and scheduling

o Utility function: encode and of quality and lag
« Users set required quality and tolerable lag R
 Reward additional quality, penalize higher lag // higher quality

« Schedule for two natural goals —
— (max-min) fairness
— overall performance higher lag

* Allow lag accumulation during resource shortage, then catch up

44



VideoStorm Evaluation Setup

* Microsoft Azure cluster

 Each worker contains 4 cores
of the 2.4GHz Intel Xeon
processor and 14GB RAM

 license plate reader
e car counter

 DNN classifier
* object tracker

VideoStorm Manager
Profiler + Scheduler

100 Worker Machines

45



Level X1 _
Leval "2 ’

« Operational traffic cameras in Bellevue and Seattle

S e 14— 30 frames per second 240P-1080P resolutlon

”. y,‘



Resource allocation during burst of queries

8 ] Lag Goal=300s 1 Lag Goal=20s [ High-Quality, Lag Goal=20s
« Start with 300 queries: SR e—
. < 0.8 )
(D Lag Goal=300s, Low-Quality 60% £, 1 -
(2) Lag Goal=20s, Low-Quality 40%  Qes ﬂi
o 0.2 A I
% 0.0 50 100 150280 250

Time (seconds)

* Burst of 150 seconds (50 — 200):
(3) 200 LPR queries (AMBER Alert)

Lag Goal=20s, High-Quality

* VideoStorm scheduler:

@ d0m|nate resource allocatlon/g-G‘
run (2) with lower quality k

120

3
significantly delay (1) | E— ———
All meet quality and lag goals %

Time (seconds)



Resource allocation during burst of queries

. . 8 Lag Goal=300s Lag Goal=20s High-Quality, Lag Goal=20s
- Start with 300 queries: & 1op
= 0.8}
~60% % 06l
~40% Qo4
8 0.2}

« Compare to a fair scheduler with varying burst duration:
* Quality improvement: up to 80%
« Lag reduction: up to 7x

- VIUCUOLWUIIIT OSUIITCUUICI . T 0.7¢
dominate resource allocation 102-3
significantly delay 2 190
run (2) with lower quality ER

% 50 100 150 200 250

All meet quality and lag goals

Time (seconds) 48



VideoStorm Scalability

* Frequently reschedule and reconfigure in reaction to changes of queries

« Even with thousands of queries, VideoStorm makes rescheduling
decisions in just a few seconds

Number of Machines
-i-%oo -k 200 -& 500 & 1000

c)/-\ L ,,,,,,,,,, : \,‘,“
E%° 3 s o
=gt B NRTTTI SRR
O \

_GCJ g g \“‘\ ,,,,,,,, PR R Y ‘,
G = 8T IS5
D ==

gOO 1000 2000 4000 8000

Number of Queries



Related Work

* Video query optimization
« Optasia[socc '16], NoScope [VLDB '17], EVA [SysML *18]
« Share common operators and reuse results from different queries

* Video systems on cloud-edge architecture
* Vigil [MobiCom *15], Firework [TPDS *18], Chameleon [SIGCOMM ’18]
* Placing tasks / operators of a processing pipeline to different locations

50



Part || Conclusion

« VideoStorm explores quality-resource-lag tradeoff in video queries

« Offline profiler: efficient estimates resource-quality profiles
* Online scheduler: optimizes jointly for quality and lag of queries

Lag Goal=300s [] Lag Goal=20s [ High-Quality, Lag Goal=20s

0.8 - (%)

o & X 3 10D
g 0.6 X X O i .———..mﬂ]mﬂ
2 X 5 0.8]
w04 . ® 0.6}
o © 0.2}

0 PR ~ 9 t

h e SN g T T T 1 o 00 ! I
0.01 0.1 1 10 100 1000 < 0 50 100

resource demand [CPU cores, log scale]

« Significant improvement in achieved quality and lag

150

Time (seconds)

250
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Deployment

at Bellevue
Traffic

Department

Dec 18 5:39pm - 6:39pm

Busiest Intersections

Location Last Hr Total Week ADT

https://vavz.azurewebsites.net

" 1ENsh CC20+h 29722 16C79




SLAQ: Quality-Driven Scheduling for
Distributed Machine Learning

Haoyu Zhang®, Logan Stafman®, Andrew Or, Michael J. Freedman
ACM Symposium on Cloud Computing (SoCC ’17)
(S:{)
PRINCETON
# UNIVERSITY




ML algorithms are approximate

ML model: a parametric transformation
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ML algorithms are approximate

ML model: a parametric transformation

* maps input variables X to output variables Y
« typically contains a set of parameters 6
 Loss function: discrepancy of model output and ground truth

» Quality: how well model maps input to the correct output
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Training ML models: an iterative process

Job

| Model f,

Tasks
\_

Send

Task
Update

Model

Worker

Model Replica fe F

o

Data Shards

 Training algorithms iteratively minimize a loss function
* E.g., stochastic gradient descent (SGD), L-BFGS

56



Training ML models: an iterative process

> 100

c R T | 3
S 8OF—F RN - —
‘é 6o f N S |
e 40p/ — LogReg LDA

5 201 o --- SVM - - MLPC
2 | | | | |
S % 20 40 60 80 100

Cumulative Time %

« Quality improvement is subject to diminishing returns
* More than 80% of work done in 20% of time
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Exploratory ML training: not a one-time effort

Adjust Feature Space
Collect Data

¥

Tune Hyperparameters

Extract Features

Restructure Models

 Train model multiple times for exploratory purposes
* Provide early feedback, direct model search to high quality models

58



How to schedule multiple training jobs on shared cluster?

o
o~

< 100 T :
| g ol j .'_ T l ’ Adjust Feature Space [
S 0| w
X f 6 Y E 40 "' — LOQ Reg """" LDA : ’ Tune Hyperparameters \
% 28 ', - _ SVM‘ ) _.I MLPC, ’ Restructure Models \
S " 20 40 60 80 100 }

Cumulative Time %

Exploratory

Approximate Diminishing Returns

* Problems with resource fairness scheduling
« Jobs in early stage: could benefit a lot from additional resources

» Jobs almost converged: make only marginal improvement

59



SLAQ: quality-aware scheduling

* Intuition: in exploratory ML training, more resources should be allocated to
jobs that have the most potential for quality improvement

—e— (Quality-Aware -#- Fair Resource

Accuracy

OO=_=2NWw 00000~
OCONORO ONROXO

0 50 100 150 200 250 Time

Loss
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Solution Overview

Normalize Predict quality § Quality-driven
quality metrics f§ improvement scheduling |
N\ -\ | .. |




Universal quality measurement metric

« Accuracy?
* Precision, F1 Score, Area Under Curve, ...
X Not applicable to non-classification models

 Loss function values?
» Square loss, smoothed hinge loss, logistic loss, cross entropy loss, ...
X Do not have comparable magnitudes or known ranges

« Reduction of loss values (ALoss)
v Always decrease to 0 as the loss function value converges

62



Normalizing quality metrics

« Quality: normalized change of loss values w.r.t. largest change so far

Normalized ALoss

1.0, o—e K-Means v—v  SVMPoly =+ MLPC
oshl\ »~—a LogReg +—< GBT — LDA
oMY —a SVM >—> GBTReg e—e |inReg
> ‘ ‘ ‘ ‘
04N . . S
g'é """" PO et oo e et
0.2 | | | |
0 30 60 90 120
Iteration

» Currently does not support some non-convex optimization algorithms
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Training iterations: loss prediction

* Previous work: offline profiling / analysis [Ermest NSDI 16] [CherryPick NSDI 17]
« Overhead for frequent offline analysis is huge

« Strawman: use last ALoss as prediction for future ALoss
« SLAQ: online prediction using weighted curve fitting

X7 Strawman

R

s 10— 25

Sop w a1 R

5102 g4 M N R

I3 10-3;_”70.1 E s N

g 10'4E \ \ §

o Dl aed AW 00 6ed Lo
O G \;\0@ SV W 0 ?~6 K Q
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Scheduling approximate ML training jobs

* Predict how much quality can be improved when assign X workers to jobs
» Reallocate workers to maximize quality improvement

Scheduler

_________________

_________________
_________________

. Resource | , .
Job #1 | i Allocation | 3 1 ][ Worker |

2 3 Worker

- Job #2 |

1 2 Worker

_Job #3 1 3 || Worker |




Experiment setup

« Representative mix of training jobs with SpQﬂ( MLlib
« Compare against a work-conserving fair scheduler

Algorithm Acronym  Type Optimization Algorithm  Dataset

K-Means K-Means Clustering Lloyd Algorithm Synthetic

Logistic Regression LogReg Classification  Gradient Descent Epsilon [33]

Support Vector Machine SVM Classification  Gradient Descent Epsilon

SVM (polynomial kernel) SVMPoly = Classification  Gradient Descent MNIST [34]

Gradient Boosted Tree GBT Classification  Gradient Boosting Epsilon

GBT Regression GBTReg Regression Gradient Boosting YearPredictionMSD [35]
Multi-Layer Perceptron Classifier =~ MLPC Classification = L-BFGS Epsilon

Latent Dirichlet Allocation LDA Clustering EM / Online Algorithm Associated Press Corpus [36]
Linear Regression LinReg Regression L-BFGS YearPredictionMSD
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Evaluation: cluster-wide quality and time

« SLAQ’s average loss is 73% lower
than that of the fair scheduler

« SLAQ reduces time to reach 90%
(95%) loss reduction by 45% (30%)

— — Fair Resource — SLAQ

Mj \}'l"\lj\f\ Nﬂ*

h
l’\'\.’l\l LH "

0 100 200 300 400 500 600 700 800
Time (seconds)

— — Fair Resource —— SLAQ

Time (seconds)

80 85 90 95 100
Loss Reduction %
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Part I1l Conclusion

« SLAQ leverages the approximate and iterative ML training process

 Highly tailored prediction for iterative job quality

 Allocate resources to maximize quality improvement

N
o
o

Prediction Error %
o 3 22
SN w N —_

(X3 Strawman KX Weighted Curve
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%
a0
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v
X

-
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0.20
@ 0.15
o 0.10
-l

0.05

0.00

— — Fair Resource

— SLAQ

! ,h L | : |
-"LF\!\I “l"%..l.'*\ lrk lJJM "rbﬂ!uht_'\}k:\'l\l'\jl{k\"wﬂﬁ J i,

0

100 200 300 400 500 600 700 800
Time (seconds)

« SLAQ achieves better overall quality and end-to-end training time
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Conclusion
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Research Summary

« Resource management for advanced data analytics
INSDI ’17]
[SoCC *17 ¥][SysML 18]
[EuroSys '18]

* Network-assisted system acceleration
» NetCache: Balancing Key-Value Stores with Fast In-Network Caching [SOSP ’17]
* NetChain: Scale-Free Sub-RTT Coordination [NSDI 18 %]

« SDN fault tolerance
 Ravana: Controller Fault-Tolerance in Software-Defined Networks [SOSR ’15]
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