
NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé
Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica

NetCache is a rack-scale key-value store that leverages

workloads.

even under

in-network data plane caching to achieve

New generation of systems enabled by programmable switches J

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

Goal: fast and cost-efficient rack-scale key-value storage

q Store, retrieve, manage key-value objects

§ Critical building block for large-scale cloud services

§ Need to meet aggressive latency and throughput objectives efficiently

q Target workloads

§ Small objects

§ Read intensive

§ Highly skewed and dynamic key popularity

…

Q: How to provide effective dynamic load balancing?

Key challenge: highly-skewed and rapidly-changing workloads

low throughput high tail latency&

Server

Load

Opportunity: fast, small cache can ensure load balancing

Balanced load

Cache absorbs hottest queries

Opportunity: fast, small cache can ensure load balancing

N: # of servers

E.g., 100 backends with 100 billions items

Cache O(N log N) hottest items

E.g., 10,000 hot objects

[B.	Fan	et	al.	SoCC’11,	X.	Li	et	al.	NSDI’16]

Requirement: cache throughput ≥ backend aggregate throughput

NetCache: towards billions QPS key-value storage rack

storage layer

flash/disk

each: O(100) KQPS
total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS
total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

NetCache: towards billions QPS key-value storage rack

storage layer

flash/disk

each: O(100) KQPS
total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS
total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

Small on-chip memory?
Only cache O(N log N) small items

in-network

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate ?!

PISA: Protocol Independent Switch Architecture

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

q Programmable Parser

§ Converts packet data into metadata

q Programmable Mach-Action Pipeline

§ Operate on metadata and update memory states

PISA: Protocol Independent Switch Architecture

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

q Programmable Parser

§ Parse custom key-value fields in the packet

q Programmable Mach-Action Pipeline

§ Read and update key-value data

§ Provide query statistics for cache updates

PISA: Protocol Independent Switch Architecture

Data plane (ASIC)

Control plane (CPU)

Network
Functions

Network
Management

Run-time API

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

P
C

Ie

NetCache rack-scale architecture

Storage ServersTop of Rack Switch

Clients

q Switch data plane
§ Key-value store to serve queries for cached keys
§ Query statistics to enable efficient cache updates

q Switch control plane
§ Insert hot items into the cache and evict less popular items
§ Manage memory allocation for on-chip key-value store

Key-Value
Cache

Query
Statistics

Cache
Management

Network
Functions

Network
Management

Run-time API

P
C

Ie

Data plane query handling

Cache

Client

1

2 Server

Read Query
(cache hit)

Hit StatsUpdate

Client Server

1

4 3

2
Write Query Invalidate Cache Stats

Client

1

4
Server

3

2Read Query
(cache miss)

CacheMiss StatsUpdate

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

NetCache Packet Format

q Application-layer protocol: compatible with existing L2-L4 layers

q Only the top of rack switch needs to parse NetCache fields

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

read, write,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Key-value store using register array in network ASIC

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

action process_array(idx):

if pkt.op == read:

pkt.value array[idx]

elif pkt.op == cache_update:

array[idx] pkt.value

0 1 2 3

A B

Register Array

pkt.value: BA

Variable-length key-value store in network ASIC?

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

0 1 2 3

A B

Register Array

pkt.value: BA

Key Challenges:

q No loop or string due to strict timing requirements

q Need to minimize hardware resources consumption
§ Number of table entries

§ Size of action data from each entry

§ Size of intermediate metadata across tables

Combine outputs from multiple arrays

Match pkt.key == A

Action bitmap = 111
index = 0

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1

A2

pkt.value: A0 A1 A2

Bitmap indicates arrays that store the key’s value

Index indicates slots in the arrays to get the value

Minimal hardware resource overhead

Match pkt.key == A pkt.key == B pkt.key == C pkt.key == D

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

bitmap = 101
index = 2

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 D0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1 C0

A2 D1

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0 D0 D1

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Cache insertion and eviction

q Challenge: cache the hottest O(N log N) items with limited insertion rate

q Goal: react quickly and effectively to workload changes with minimal updates

Key-Value
Cache

Query
Statistics

Cache Management

PC
Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of
new hot and sampled cached keys

3 Control plane fetches values for
keys to be inserted to the cache

4 Control plane inserts and evicts keys

Storage ServersTor Switch

Query statistics in the data plane

q Cached key: per-key counter array

q Uncached key

§ Count-Min sketch: report new hot keys

§ Bloom filter: remove duplicated hot key reports

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

Cache
Lookup

Evaluation

q Can NetCache run on programmable switches at line rate?

q Can NetCache provide significant overall performance improvements?

q Can NetCache efficiently handle workload dynamics?

Prototype implementation and experimental setup

q Switch
§ P4 program (~2K LOC)

§ Routing: basic L2/L3 routing
§ Key-value cache: 64K items with 16-byte key and up to 128-byte value

§ Evaluation platform: one 6.5Tbps Barefoot Tofino switch

q Server
§ 16-core Intel Xeon E5-2630, 128 GB memory, 40Gbps Intel XL710 NIC

§ TommyDS for in-memory key-value store
§ Throughput: 10 MQPS; Latency: 7 us

The “boring life” of a NetCache switch

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

0 32 64 96 128
9alue 6ize (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hS

ut
 (B

4
3

6
)

(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

(a) Throughput vs. value size.

0 16. 32. 48. 64.
CacKe 6ize

0.0

0.5

1.0

1.5

2.0

2.5

TK
ro

ug
KS

ut
 (B

4
3

6
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

Single switch benchmark

And its “not so boring” benefits

3-10x throughput improvements

uQiforP ziSf-0.9 ziSf-0.95 ziSf-0.99
WorNloDd DisWribuWioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hS

uW
 (B

Q
P

S
)

1oCDche 1eWCDche(servers) 1eWCDche(cDche)

1 switch + 128 storage servers

Impact of workload dynamics

hot-in workload (radical change) random workload (moderate change)

Quickly and effectively reacts to a wide range of workload dynamics.

0 20 40 60 80 100
TiPe (s)

0

10

20

30

40

50

Th
ro

ug
hS

ut
 (0

4
3

6
)

average throughSut Ser sec.
average throughSut Ser 10 sec.

0 20 40 60 80 100
TiPe (s)

0

10

20

30

40

50

Th
ro

ug
hS

ut
 (0

4
3

6
)

average throughSut Ser sec.
average throughSut Ser 10 sec.

(2 physical servers to emulate 128 storage servers, performance scaled down by 64x)

NetCache is a rack-scale key-value store that leverages

workloads.

even under

in-network data plane caching to achieve

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

Conclusion: programmable switches beyond networking

q Cloud datacenters are moving towards …

§ Rack-scale disaggregated architecture

§ In-memory storage systems

§ Task scheduling at microseconds granularity

q Programmable switches can do more than packet forwarding

§ Cross-layer co-design of compute, storage and network stacks

§ Switches help on caching, coordination, scheduling, etc.

q New generations of systems enabled by programmable switches J

