NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé
Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica

‘3 PRINCETON della 55

PRINCETON @ I & Cornell University Berkeley

IIIIIIIIIIIIIIIIIIIIII

JoHns Hoprkins BAREFCO:T

UUUUUU SITY NETWORKS

NetCache 1s a rack-scale key-value store that leverages

in-network data plane caching to achieve

even under
highly-skewed & rapidly-changing
workloads.

New generation of systems enabled by programmable switches ©

Goal: fast and cost-efficient rack-scale key-value storage

Q Store, retrieve, manage key-value objects

= Critical building block for large-scale cloud services

Gaffdeae o 0 &

= Need to meet aggressive latency and throughput objectives efficiently

QO Target workloads

= Small objects

= Read intensive

= Highly skewed and dynamic key popularity

Key challenge: highly-skewed and rapidly-changing workloads

low throughput [Pyl high tail latency

Load =

Bl = H =
Server = Ejlijij@ """ Ejlijlijij

Q: How to provide effective dynamic load balancing?

Opportunity: fast, small cache can ensure load balancing

Cache absorbs hottest queries -

Balanced load el

Opportunity: fast, small cache can ensure load balancing

[B. Fan et al. SoCC’'11, X. Li etal. NSDI'16]

Cache O(XNVlog N) hottest items -
E.g., 10,000 hot objects

N: # of servers 00 -

E.g., 100 backends with 100 billions items

Requirement: cache throughput > backend aggregate throughput

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

oot flash/disk cache g in-memory
each: O(100) KQPS ‘ 0(10) MOPS
total: O(10) MQPS

storage layer cache layer
~ in-memory cache ?
each: O(10) MQPS l . ; pS
total: O(1) BQPS (1) BQ

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

flash/disk cache @@ in-memory
each: O(100) KQPS I O(10) MQPS
total: O(10) MQPS

storage layer cache layer

@™ in-memory cache l = in-network
each: O(10) MQPS O(1) BOPS
total: O(1) BQPS (D) BQ

Small on-chip memory?
Only cache O(V log N) small items

Key-value caching in network ASIC at line rate ?!

1 How to i1dentify application-level packet fields ?
1 How to store and serve variable-length data ?

2 How to efficiently keep the cache up-to-date ?

PISA: Protocol Independent Switch Architecture

0 Programmable Parser

= Converts packet data into metadata

0 Programmable Mach-Action Pipeline

= (Operate on metadata and update memory states

Match + Action

= o

\\

WHHIN

|

— L
...

J

o

Programmable Parser

Y

Programmable Match-Action Pipeline

HEHE

ATATIATAY

PISA: Protocol Independent Switch Architecture

0 Programmable Parser

= Parse custom key-value fields in the packet

0 Programmable Mach-Action Pipeline

= Read and update key-value data

» Provide query statistics for cache updates

Match + Action

o

WHHIN

= o

|

\\

Programmable Parser

— L
...

o

J

Y

Programmable Match-Action Pipeline

HEHE

ATATIATAY

PISA: Protocol Independent Switch Architecture

Control plane (CPU)

Data plane (ASIC)

Match + Action

= o

\\

WWHHN

|

\
Network
Management
Run-time API
Network
Functions
j =~ ~

T T
e, .

J

o

Programmable Parser

Y

Programmable Match-Action Pipeline

TUEE)

WHIHH

NetCache rack-scale architecture

L

L

[Clients

Management

Network Cache
Management

Run-time API

Network Key-Value

)

Functions Cache

Query
Statistics

Top of Rack Switch

aobod

Storage Servers

0 Switch data plane

= Key-value store to serve queries for cached keys
= Query statistics to enable efficient cache updates

O Switch control plane

= Insert hot items into the cache and evict less popular items
= Manage memory allocation for on-chip key-value store

Data plane query handling

1
Read Query E—
(cache hit) D) 5

Client

1
Read Query —_—
(cache miss) D i

Client

Write Query . |

Hit | Cache | Update| Stats
Miss | Cache | Update| Stats
' Invalidate| Cache Stats

Key-value caching in network ASIC at line rate

—» 0 How to identify application-level packet fields ?
1 How to store and serve variable-length data ?

2 How to efficiently keep the cache up-to-date ?

NetCache Packet Format

Existing Protocols NetCache Protocol
A A

OP SEQ KEY VALUE

‘ , DN |
r— reserved read, write,
L2/L3 Routing port # delete, etc.

O Application-layer protocol: compatible with existing 1.2-1.4 layers

Q Only the top of rack switch needs to parse NetCache fields

Key-value caching in network ASIC at line rate

1 How to i1dentify application-level packet fields ?
—» 0O How to store and serve variable-length data ?

2 How to efficiently keep the cache up-to-date ?

Key-value store using register array in network ASIC

pkt.key == A pkt.key ==
process_array(0) process_array(1)
pkt.value: | A B
o 1 2 3
action process array (idx): A|B
1f pkt.op == read: Register Array

pkt.value =— array[idx]
elif pkt.op == cache update:

array[idx] -— pkt.value

Variable-length key-value store in network ASIC?

Match pkt.key == A pkt.key ==
Action process_array(0) process_array(1)

pkt.value: | A B
0O 1 2 3
A|B
Register Array
Key Challenges:

O No loop or string due to strict timing requirements

0 Need to minimize hardware resources consumption
= Number of table entries
= Size of action data from each entry

= Size of intermediate metadata across tables

Combine outputs from multiple arrays

Match pkt.key == A Bitmap indicates arrays that store the key’s value
Lookup Table |[RSECRNE bitmap = 111 Index indicates slots in the arrays to get the value
index =0

Minimal hardware resource overhead

pkt.value: |AO|Al|A2

Match bitmap[0] == o 1 2 3
Action process_array_0 (index) — |A0Q Register Array 0

Value Table 0

Match bitmap[1] ==
JNe:te3 Ml process_array_1 (index) — |Al Register Array 1

Value Table 1

Value Table 2 Match bitmap|[2] == A
J-NeisTo) s B pProcess_array_2 (index) — A2 egister Array

Combine outputs from multiple arrays

Lookup Table

Value Table 0

Value Table 1

Value Table 2

Match

Action

pkt.value:

Match

Action

Match

Action

Match

Action

pkt.key == A | pkt.key == B pkt.key == C pkt.key == D
bitmap = 111 | bitmap = 110 bitmap = 010 bitmap = 101
index =0 index =1 index = 2 index = 2

AOQ|Al A2 BO | B1 C0 D0O|D1
bitmap[0] == 0 1 2
process_array_0 (index) — |AQ0[BO | DO Register Array 0
bitmap|[1] ==
process_array_1 (index) — |Al1|B1|C0 Register Array 1
bitmap|[2] == .
process_array_2 (index) — |A2 D1 Register Array 2

Key-value caching in network ASIC at line rate

1 How to i1dentify application-level packet fields ?
1 How to store and serve variable-length data ?

—> 0 How to efficiently keep the cache up-to-date ?

Cache insertion and eviction

0 Challenge: cache the hottest O(/Nlog N) items with limited insertion rate

QO Goal: react quickly and effectively to workload changes with minimal updates

T)

o Data plane reports hot keys

[Cache Management](

A A

2,

A 4

Key-Value
Cache

Query
Statistics

Tor Switch

e Control plane compares loads of
new hot and sampled cached keys

e Control plane fetches values for
keys to be inserted to the cache

O Control plane inserts and evicts keys

1000

Storage Servers

Query statistics in the data plane

pkt.key

f report
- -
not cached . hot
— — -
I I -
Cache B
Lok Count-Min sketch Bloom filter
‘ cached . .

Per-key counters for each cached item

0 Cached key: per-key counter array

0 Uncached key

= Count-Min sketch: report new hot keys

= Bloom filter: remove duplicated hot key reports

Evaluation

0 Can NetCache run on programmable switches at line rate?

0 Can NetCache provide significant overall performance improvements?

0 Can NetCache efficiently handle workload dynamics?

Prototype implementation and experimental setup

Q Switch
= P4 program (~2K LOC)
= Routing: basic L2/L3 routing
= Key-value cache: 64K items with 16-byte key and up to 128-byte value

= Evaluation platform: one 6.5Tbps Barefoot Tofino switch

Q Server
=]6-core Intel Xeon E5-2630, 128 GB memory, 40Gbps Intel XL.710 NIC

* TommyDS for in-memory key-value store
= Throughput: 10 MQPS; Latency: 7 us

The “boring life”” of a NetCache switch

Single switch benchmark

25 25
N 7)) i—.—.—.—.
al i s i
g 2.0 g 2.0
— 15t ?5,’ 1.5
-
Qo o
§1.0 - -§1.0 -
205} S05 ¢}
= =
OO]]]] O-O | |]]
0 32 64 96 128 0 16K 32K 48K 64K

Value Size (Byte) Cache Size

And its “not so boring” benefits

1 switch + 128 storage servers

[—1 NoCache ll NetCache(servers) lll NetCache(cache)

N
o

SN
&)

O
o

Throughput (BQPS)
>

O
o

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

3-10x throughput improvements

Impact of workload dynamics

hot-in workload (radical change) random workload (moderate change)

.90 __50

2 2

EJilnln Al=Isininl & a0 N_} o—o—o—or

= Wy T] =

— 30 ¢ — 30

3 3

< 20 t » < 20 t v

o

IR ERRRRN S

= 10 | average throughput per sec. = 10 average throughput per sec.

= o L—°— average throughput per 10 sec. = o L—°— average throughput per 10 sec.
0 20 40 60 80 100 0 20 40 60 80 100

Time (s) Time (s)

Quickly and effectively reacts to a wide range of workload dynamics.

(2 physical servers to emulate 128 storage servers, performance scaled down by 64x)

NetCache 1s a rack-scale key-value store that leverages

in-network data plane caching to achieve

even under

highly-skewed & rapidly-changing

workloads.

Conclusion: programmable switches beyond networking

Q Cloud datacenters are moving towards ...

= Rack-scale disaggregated architecture
* In-memory storage systems

= Task scheduling at microseconds granularity

0 Programmable switches can do more than packet forwarding

= Cross-layer co-design of compute, storage and network stacks

= Switches help on caching, coordination, scheduling, etc.

0 New generations of systems enabled by programmable switches ©

