Riffle: Optimized Shuffle Service for
Large-Scale Data Analytics

™ PRINCETON
W UNIVERSITY

n facebook.

Haoyu Zhang

Brian Cho

Ergin Seyfe

Avery Ching

Michael J. Freedman

Batch analytics systems are widely used

 Large-scale SQL queries S APACHE C’QZ

« Custom batch jobs p .

* Pre-/Post-processing for ML
At facebook [aTaTs
10s of PB newdatais generated
every day for batch processing
100s of TB datais added to be %
Q

processed by a single job
~=HIVE

Batch analytics jobs: logical graph

wide dependency

, __________ \

.-~ l
=
smmam |
|
|
|
—E_:_> map
\

Q
8‘_
c O,
S 5
o

<

./

——__’
‘:h.\
=
(¢)]
-

Batch analytics jobs: DAG execution plan

« Shuffle: all-to-all communication between stages
« >10x larger than available memory, strong fault tolerance requirements
— on-disk shuffle files

The case for tiny tasks

. ..

L 4 ‘0
llllllllllllllllllllllllllll

 Benefits of slicing jobs into small tasks
* Improve parallelism [Tinytasks HotOS 13] [Subsampling IC2E 14] [Monotask SOSP 17]
» Improve load balancing [Sparrow SOSP 13]
« Reduce straggler effect [Dolly NSDI 13] [SparkPerf NSDI 15]

The case against tiny tasks

Although we were able to run the Spark job with such a high

number of tasks, we found that there is significant performance
degradation when the number of tasks is too high.

* Engineering experience often argues against running too many tasks
* Medium scale — very large scale (10x larger than memory space)
 Single-stage jobs — multi-stage jobs (= 50%)

[*] Apache Spark @Scale: A 60 TB+ Production Use Case. https://tinyurl.com/yadx29qgl

6

https://tinyurl.com/yadx29gl

Shuffle I/O grows quadratically with data

—&— Shuffle Time =4 - /O Request

(o]
- o
§ 4000 —
2 L1120 =
© 3000 c
= A 3
i= 2000 A 180 3
L, @
£ 1000 40 9
5 3
@ o . -0

0 5000 10000
Number of Tasks

« Large amount of fragmented I/O requests
« Adversarial workload for hard drives!

Size (KB)

—&— Shuffle Fetch Size

1500 A

1000 +

500 -

0+

0

5000 10000
Number of Tasks

Strawman: tune number of tasks in a job

L

R/

« Tasks spill intermediate data to disk if data splits exceed memory capacity
 Larger task execution reduces shuffle 1/O, but increases spill 1/0

Strawman: tune number of tasks in a job

2 Shuffle Spill

0%
%%

0.9,

5 3000 2 §
g1 0,

5 2000 7 7 |

£ 1000 g / % % %

.

of® pP P PP O ,\QQ?LQQQ@Q%@SQQQQ

Number of Map Tasks

9.0
Q
.0

Q

)2
%

9,

* Need to retune when input data volume changes for each individual job

« Bulky tasks can be detrimental [Dolly NSDI 13] [SparkPerf NSDI 15] [Monotask SOSP 17]
« straggler problems, imbalanced workload, garbage collection overhead

Bulky Tasks

Large Amount of

Fragmented Shuffle |/C=™

Fewer, Sequential
Shuffle 1/0

@(9

10

Riffle: optimized shuffle service

.) C
Driver | assign {Tasks) [Jyorker Machine

»

'_S_c_h_e_dyl_qr_. ~ statuses EXchtoq . E)gecutor
send merge |~

. Riffle | >
' Merge ! requests D"'DD@ File System

report merge

(Z2Ee e J T statuses Riffle Shuffle Service

' Job / Taski| reporttask ||| Task Task H{ Task Task |

* Riffle shuffle service: a long running instance on each physical node
 Riffle scheduler: keeps track of shuffle files and issues merge requests

Riffle: optimized shuffle service

Application Driver
* When receiving a merge request Merge Scheduler

11

Worker-Side Merger

1. Combines small shuffle files into
larger ones =
2. Keeps original file layout =
Crep >
 Reducers fetch fewer, large blocks —
instead of many, small blocks =
Crep >

Optimized Shuffle Service

12

Results with merge operations on synthetic workload

—&— Read Block Size =—#&— Number of Reads —&— Map Stage —+— Reduce Stage
6000 8000 E 500
~ — 400"
0 4500- 6000 (3 o
< - & 3001
3000 1 4000
% o £ 200-
1500 1 2000 & F 100,
e
0 - - 0 0
No Merge 5 10 20 40 No Merge 5 10 20 40
N-Way Merge N-Way Merge

* Riffle reduces number of fetch requests by
* Reduce stage , map stage +169s — job completes

13

Best-effort merge: mixing merged and unmerged files

—&— Read Block Size =—#&— Number of Reads —— Map Stage —+— Reduce Stage
500 1
6000
—_ —~ 400 1
0 4500- o
< & 300
9 3000 2 00,
& 1500 = 100
O T T
No Merge 5 10 20 40 ONoMerge 3 10 20 40
N-Way Merge N-Way Merge
-------- Best-effort merge (95%)
* Reduce stage , map stage +52s — job completes

» Riffle finishes job with only ~50% of cluster resources!

14

Additional enhancements

« Handling merge operation failures

« Efficient memory management

« Balance merge requests in clusters

Buffered Read

Block 65

Block 66

] _
Block 65 Block 65
T Block 66]

J-Blockg7]. | Block6r

- .

Block 67

f

Block 65-1

Block 65-2

Block 65-m

Block 66-2

b Block. 56411

Block 66-m

oJLM palayng

request 1_.--- ~__ FIBN Merger

(Job 1 Driver]<:;j:/ W Vierger)
G zoner) . FENNN v

X
PP | | |

S

| Job k Driver k<

request I ~~~._
> EII. Merger

15

Experiment setup

» Testbed: Spark on a 100-node cluster
« 56 CPU cores, 256GB RAM, 10Gbps Ethernet links
« Each node runs 14 executors, each with 4 cores, 14GB RAM

» Workload: 4 representative production jobs at Facebook

Data Map Reduce Block
I 167.6 GB 915 200 983 K
2 1.15TB 7,040 1,438 120 K
3 27TB 8,064 2,500 147 K
4 267 TB 36,145 20,011 360 K

Reduction in shuffle I/O requests

4 NoMerge 4 512K BX 1M £ 2M EX 4M

S 20 800
2 151 § 600
(b}

5 X

3 10 L 400
i <

O & g 2@ | 1200
= X

q:_S 0 = E‘Egl_‘iv—v mm / 0
(',C) Job1 Job2 Job3 Job4

« Riffle reduces # of I/O requests by 5--10x for medium / large scale jobs

Savings in end-to-end job completion time

21 NoMerge [512K B 1M [2M EX 4M

S 100" 1200
3 %
) /
XS >“§ | 800
< 5 DU
S S NG - 400
. IR
5 E E >“? :
Job1 Job?2 J Job4

« Map stage time is almost not affected (with best-effort merge)
« Reduces job completion time by 20--40% for medium / large jobs

18

Conclusion

« Shuffle I/O becomes scaling bottleneck for multi-stage jobs

« Efficiently schedule merge operations, mitigate merge stragglers

merge
request -

« Riffle is deployed for Facebook’s production jobs processing PBs of data

Z1 NoMerge [4 512K B 1M [2M EX 4M

100 - - 1200

il |-

Job1 Job?2 Job3 Job4

—]

|
NNONCNCNEN

NN

Total Task Execution
Time / Days
(@)
o

o

19

Thanks!

Haoyu Zhang
haoyuz@cs.princeton.edu
http://www.haoyuzhang.org

Block 1

Block 2

Block R

Block 1

Block 2

Block R

Block 1

Block 2

Block R

N files

Riffle merge policies

Block 1

RBlock /

Block 1

Block R

Block 2

Block 1

Block 2

Block R

Block R

RIGck

Block R

J

Block 1

Block 2

Block R

total average block size

> merge threshold

21

Best-effort merge

« Observation: slowdown in map stage is mostly due to stragglers

Tread | NN | WD () —
I
Tread2 | M | NN N 0w ;
Theads | N WD WD (L0 .
Merger I . - — I

» Best-effort merge: mixing merged and unmerged shuffle files

 When number of finished merge requests is larger than a user
specified percentage threshold, stop waiting for more merge results

22

