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Batch analytics systems are widely used

 Large-scale SQL queries S APACHE C’QZ

« Custom batch jobs p .

* Pre-/Post-processing for ML
At facebook [ aTaTs
10s of PB newdatais generated
every day for batch processing
100s of TB datais added to be %
Q

processed by a single job
~=HIVE




Batch analytics jobs: logical graph

wide dependency
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Batch analytics jobs: DAG execution plan

« Shuffle: all-to-all communication between stages
« >10x larger than available memory, strong fault tolerance requirements
— on-disk shuffle files



The case for tiny tasks
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 Benefits of slicing jobs into small tasks
* Improve parallelism [Tinytasks HotOS 13] [Subsampling IC2E 14] [Monotask SOSP 17]
» Improve load balancing [Sparrow SOSP 13]
« Reduce straggler effect [Dolly NSDI 13] [SparkPerf NSDI 15]



The case against tiny tasks

Although we were able to run the Spark job with such a high

number of tasks, we found that there is significant performance
degradation when the number of tasks is too high.

* Engineering experience often argues against running too many tasks
* Medium scale — very large scale (10x larger than memory space)
 Single-stage jobs — multi-stage jobs (= 50%)

[*] Apache Spark @Scale: A 60 TB+ Production Use Case. https://tinyurl.com/yadx29qgl
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https://tinyurl.com/yadx29gl

Shuffle I/O grows quadratically with data
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« Large amount of fragmented I/O requests
« Adversarial workload for hard drives!
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Strawman: tune number of tasks in a job
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« Tasks spill intermediate data to disk if data splits exceed memory capacity
 Larger task execution reduces shuffle 1/O, but increases spill 1/0



Strawman: tune number of tasks in a job

2 Shuffle Spill
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* Need to retune when input data volume changes for each individual job

« Bulky tasks can be detrimental [Dolly NSDI 13] [SparkPerf NSDI 15] [Monotask SOSP 17]
« straggler problems, imbalanced workload, garbage collection overhead



Bulky Tasks

Large Amount of

Fragmented Shuffle |/C=™

Fewer, Sequential
Shuffle 1/0
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Riffle: optimized shuffle service

. ) C
Driver | assign {Tasks) [ Jyorker Machine

»

'_S_c_h_e_dyl_qr_. ~ statuses EXchtoq . E)gecutor
send merge |~

. Riffle | >
' Merge ! requests D"'DD@ File System

report merge
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* Riffle shuffle service: a long running instance on each physical node
 Riffle scheduler: keeps track of shuffle files and issues merge requests



Riffle: optimized shuffle service

Application Driver
* When receiving a merge request Merge Scheduler
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Worker-Side Merger

1. Combines small shuffle files into
larger ones =
2. Keeps original file layout =
Crep >
 Reducers fetch fewer, large blocks —
instead of many, small blocks =
Crep >

Optimized Shuffle Service
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Results with merge operations on synthetic workload
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* Riffle reduces number of fetch requests by
* Reduce stage , map stage +169s — job completes
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Best-effort merge: mixing merged and unmerged files
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-------- Best-effort merge (95%)
* Reduce stage , map stage +52s — job completes

» Riffle finishes job with only ~50% of cluster resources!
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Additional enhancements

« Handling merge operation failures

« Efficient memory management

« Balance merge requests in clusters

Buffered Read
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Experiment setup

» Testbed: Spark on a 100-node cluster
« 56 CPU cores, 256GB RAM, 10Gbps Ethernet links
« Each node runs 14 executors, each with 4 cores, 14GB RAM

» Workload: 4 representative production jobs at Facebook

Data Map Reduce Block
I 167.6 GB 915 200 983 K
2 1.15TB 7,040 1,438 120 K
3 27TB 8,064 2,500 147 K
4 267 TB 36,145 20,011 360 K




Reduction in shuffle I/O requests
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« Riffle reduces # of I/O requests by 5--10x for medium / large scale jobs



Savings in end-to-end job completion time
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« Map stage time is almost not affected (with best-effort merge)
« Reduces job completion time by 20--40% for medium / large jobs
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Conclusion

« Shuffle I/O becomes scaling bottleneck for multi-stage jobs

« Efficiently schedule merge operations, mitigate merge stragglers

merge
request -

« Riffle is deployed for Facebook’s production jobs processing PBs of data
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Thanks!

Haoyu Zhang
haoyuz@cs.princeton.edu
http://www.haoyuzhang.org
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Best-effort merge

« Observation: slowdown in map stage is mostly due to stragglers

Tread | NN | WD () —
I
Tread2 | M | NN N 0w ;
Theads | N WD WD (L0 .
Merger I . - — I

» Best-effort merge: mixing merged and unmerged shuffle files

 When number of finished merge requests is larger than a user
specified percentage threshold, stop waiting for more merge results
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