
SLAQ: Quality-Driven Scheduling for 
Distributed Machine Learning

Haoyu Zhang*, Logan Stafman*, Andrew Or, Michael J. Freedman



“AI is the new electricity.”

• Machine translation
• Recommendation system
• Autonomous driving
• Object detection and recognition

2

Supervised Unsupervised

Transfer Reinforcement

Learning



ML algorithms are approximate

• ML model: a parametric transformation

! "#$

3



ML algorithms are approximate

• ML model: a parametric transformation

• maps input variables ! to output variables "
• typically contains a set of parameters #

• Quality: how well model maps input to the correct output
• Loss function: discrepancy of model output and ground truth

! "$%

4



Training ML models: an iterative process

• Training algorithms iteratively minimize a loss function
• E.g., stochastic gradient descent (SGD), L-BFGS

5

WorkerWorker

Update 
Model

Job
Worker

Data Shards

Model Replica !"#
Model !"

Tasks

Send 
Task



Training ML models: an iterative process

• Quality improvement is subject to diminishing returns
• More than 80% of work done in 20% of time

0 20 40 60 80 100
CuPulDtLve TLPe %

0
20
40
60
80

100

LR
VV

 R
ed

uc
tLR

n 
%

LRgReg
6V0

LDA
0LPC

6



Exploratory ML training: not a one-time effort

• Train model multiple times for exploratory purposes
• Provide early feedback, direct model search for high quality models

Collect Data

Extract Features

Train ML 
Models

Adjust Feature Space

Tune Hyperparameters

Restructure Models

7



WorkerJob #1

Job #2

Job #3

1

Worker3

Worker2

Worker3

3

2

1

1

Scheduler

How to schedule multiple training jobs on shared cluster?

• Key features of ML jobs
• Approximate
• Diminishing returns
• Exploratory process

• Problem with resource fairness scheduling
• Jobs in early stage: could benefit a lot from additional resources
• Jobs almost converged: make only marginal improvement

8



SLAQ: quality-aware scheduling

• Intuition: in the context of approximate ML training, more resources should 
be allocated to jobs that have the most potential for quality improvement 

0 50 100 150 200 250 TLme
0.0
0.2
0.4
0.6
0.8
1.0

A
FF

ur
aF

y

4ualLty-Aware FaLr 5esRurFe

0.0
0.6
1.2
1.8
2.4
3.0

LR
ss

0 50 100 150 200 250 TLme
0.0
0.2
0.4
0.6
0.8
1.0

A
FF

ur
aF

y

4ualLty-Aware FaLr 5esRurFe

0.0
0.6
1.2
1.8
2.4
3.0

LR
ss

0 50 100 150 200 250 TLme
0.0
0.2
0.4
0.6
0.8
1.0

A
FF

ur
aF

y

4ualLty-Aware FaLr 5esRurFe

0.0
0.6
1.2
1.8
2.4
3.0

LR
ss

9



Solution Overview

Normalize 
quality metrics

Predict quality 
improvement

Quality-driven 
scheduling

10



Normalizing quality metrics

Applicable to All
Algorithms?

Comparable 
Magnitudes? Known Range? Predictable?

Accuracy / F1 Score / Area Under 
Curve / Confusion Matrix / etc. � � � �

Loss � � � �
Normalized Loss � � � �

∆Loss � � � �
Normalized ∆Loss � � � �

11

Applicable to All
Algorithms?

Comparable 
Magnitudes? Known Range? Predictable?

Accuracy / F1 Score / Area Under 
Curve / Confusion Matrix / etc.

Loss

Normalized Loss

∆Loss

Normalized ∆Loss



Normalizing quality metrics

• Normalize change of loss values w.r.t. largest change so far
• Currently does not support some non-convex optimization algorithms

0 30 60 90 120
IterDtLRn

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

1
Rr

P
Dl

Lz
eG

 ∆
LR

VV .-0eDnV
LRgReg
690

6903Rly
GBT
GBTReg

0L3C
LDA
LLnReg

12



Training iterations: loss prediction

• Previous work: offline profiling / analysis [Ernest NSDI 16] [CherryPick NSDI 17]

• Overhead for frequent offline analysis is huge

• Strawman: use last ∆Loss as prediction for future ∆Loss

• SLAQ: online prediction using weighted curve fitting

LDA
G%7

LLn5eg
6V0

0L3C
LRg5eg

6V03Rly
10-4

10-3

10-2

10-1

100

3
re

GL
cW

LR
n 

E
rr

Rr
 %

0.1
0.0

0.40.4
1.1

0.2

1.20.6

4.84.7 6.14.3

52.5

3.6

6WrDwPDn WeLghWeG Curve

13

LDA
G%7

LLn5eg
6V0

0L3C
LRg5eg

6V03Rly
10-4

10-3

10-2

10-1

100

3
re

GL
cW

LR
n 

E
rr

Rr
 %

0.1
0.0

0.40.4
1.1

0.2

1.20.6

4.84.7 6.14.3

52.5

3.6

6WrDwPDn WeLghWeG Curve



Scheduling approximate ML training jobs

• Predict how much quality can be improved when assign X workers to jobs
• Reassign workers to maximize quality improvement

WorkerJob #1

Job #2

Job #3

Scheduler

1

Worker3

Worker2

Worker3

3

2

1

1

Prediction
Resource 
Allocation

14



Experiment setup

• Representative mix of training jobs with
• Compare against a work-conserving fair scheduler 

Algorithm Acronym Type Optimization Algorithm Dataset

K-Means K-Means Clustering Lloyd Algorithm Synthetic
Logistic Regression LogReg Classification Gradient Descent Epsilon [33]
Support Vector Machine SVM Classification Gradient Descent Epsilon
SVM (polynomial kernel) SVMPoly Classification Gradient Descent MNIST [34]
Gradient Boosted Tree GBT Classification Gradient Boosting Epsilon
GBT Regression GBTReg Regression Gradient Boosting YearPredictionMSD [35]
Multi-Layer Perceptron Classifier MLPC Classification L-BFGS Epsilon
Latent Dirichlet Allocation LDA Clustering EM / Online Algorithm Associated Press Corpus [36]
Linear Regression LinReg Regression L-BFGS YearPredictionMSD

Table 1: Summary of ML algorithms, types, and the optimizers and datasets we used for testing.

4.2 Measuring and Predicting Loss

After unifying the quality metrics for different jobs,
we proceed to allocate resources for global quality im-
provement. When making a scheduling decision for a
given job, SLAQ needs to know how much loss reduction
the job would achieve by the next epoch if it was granted
a certain amount of resources. We derive this informa-
tion by predicting (i) how many iterations the job will
have completed by the next epoch (§4.2.1), and (ii) how
much progress (i.e., loss reduction) the job could make
within these iterations (§4.2.2).

Prediction for iterative ML training jobs is different
from general big-data analytics jobs. Previous work [15,
38] estimates job’s runtime on some given cluster re-
sources by analyzing the job computation and communi-
cation structure, using offline analysis or code profiling.
As the computation and communication pattern changes
during ML model configuration tuning, the process of
offline analysis needs to be performed every time, thus
incurring significant overhead. ML prediction is also
different from the estimations to approximate analytical
SQL queries [16, 17] where the resulting accuracy can be
directly inferred with the sampling rate and analytics be-
ing performed. For iterative ML training jobs, we need to
make online predictions for the runtime and intermediate
quality changes for each iteration.

4.2.1 Runtime Prediction

SLAQ is designed to work with distributed ML training
jobs running on batch-processing computational frame-
works like Spark and MapReduce. The underlying
frameworks help achieve data parallelization for training
ML models: the training dataset is large and gets parti-
tioned on multiple worker nodes, and the size of mod-
els (i.e., set of parameters) is comparably much smaller.
The model parameters are updated by the workers, ag-
gregated in the job driver, and disseminated back to the
workers in the next iteration.

SLAQ’s fine-grained scheduler resizes the set of work-
ers for ML jobs frequently, and we need to predict the it-
eration of each job’s iteration, even while the number and

set of workers available to that job is dynamically chang-
ing. Fortunately, the runtime of ML training—at least
for the set of ML algorithms and model sizes on which
we focus—is dominated by the computation on the par-
titioned datasets. SLAQ considers the total CPU time of
running each iteration as c · S, where c is a constant de-
termined by the algorithm complexity, and S is the size
of data processed in an iteration. SLAQ collects the ag-
gregate worker CPU time and data size information from
the job driver, and it is easy to learn the constant c from
a history of past iterations. SLAQ thus predicts an itera-
tion’s runtime simply by c ·S/N, where N is the number
of worker CPUs allocated to the job.

We use this heuristic for its simplicity and accu-
racy (validated through evaluation in §6.3), with the as-
sumption that communicating updates and synchroniz-
ing models does not become a bottleneck. Even with
models larger than hundreds of MBs (e.g., Deep Neu-
ral Networks), many ML frameworks could significantly
reduce the network traffic with model parallelism [39] or
by training with relaxed model consistency with bounded
staleness [40], as discussed in §7. Advanced runtime pre-
diction models [41] can also be plugged into SLAQ.

4.2.2 Loss Prediction

Iterations in some ML jobs may be on the order of
10s–100s of milliseconds, while SLAQ only schedules on
the order of 100s of milliseconds to a few seconds. Per-
forming scheduling on smaller intervals would be dis-
proportionally expensive due to scheduling overhead and
lack of meaningful quality changes. Further, as disparate
jobs have different iteration periods, and these periods
are not aligned, it does not make sense to try to schedule
at “every” iteration of the jobs.

Instead, with runtime prediction, SLAQ knows how
many iterations a job could complete in the given
scheduling epoch. To understand how much quality im-
provement the job could get, we also need to predict the
loss reduction in the following several iterations.

A strawman solution is to directly use the loss reduc-
tion obtained from the last iteration as the predicted loss
reduction value for the following several iterations. This

15



Evaluation: resource allocation across jobs

• 160 training jobs submitted to cluster following Poisson distribution
• 25% jobs with high loss values
• 25% jobs with medium loss values
• 50% jobs with low loss values (almost converged)

0 100 200 300 400 500 600 700 800
7iPe (seconds)

0

20

40

60

80

100

6
ha

Ue
 o

f C
lu

st
eU

 C
3

8
s 

(%
)

%ottoP 50% Jobs 6econd 25% Jobs 7oS 25% Jobs

0 100 200 300 400 500 600 700 800
7iPe (seconds)

0

20

40

60

80

100

6
ha

Ue
 o

f C
lu

st
eU

 C
3

8
s 

(%
)

%ottoP 50% Jobs 6econd 25% Jobs 7oS 25% Jobs

0 100 200 300 400 500 600 700 800
7iPe (seconds)

0

20

40

60

80

100

6
ha

Ue
 o

f C
lu

st
eU

 C
3

8
s 

(%
)

%ottoP 50% Jobs 6econd 25% Jobs 7oS 25% Jobs

0 100 200 300 400 500 600 700 800
7iPe (seconds)

0

20

40

60

80

100

6
ha

Ue
 o

f C
lu

st
eU

 C
3

8
s 

(%
)

%ottoP 50% Jobs 6econd 25% Jobs 7oS 25% Jobs

16



Evaluation: cluster-wide quality and time

• SLAQ’s average loss is 73% lower 
than that of the fair scheduler

0 100 200 300 400 500 600 700 800
7Lme (seFRQds)

0.00
0.05
0.10
0.15
0.20

LR
ss

)aLr 5esRurFe 6LA4

80 85 90 95 100
LRss 5eduFtLRQ %

10
20
40

100
200

TL
m

e 
(s

eF
RQ

ds
) )aLr 5esRurFe SLA4

• SLAQ reduces time to reach 90% 
(95%) loss reduction by 45% (30%)

Quality

Time

17



SLAQ Evaluation: Scalability

• Frequently reschedule and reconfigure in reaction to changes of progress
• Even with thousands of concurrent jobs, SLAQ makes rescheduling 

decisions in just a few seconds 

1000 2000 4000 8000 16000
1umber of WorNers

0.0

0.5

1.0

1.5

2.0
6

ch
ed

ul
in

J 
Ti

m
e 

(s
) 1000 2000 3000 4000 Jobs

18



Conclusion

• SLAQ leverages the approximate and iterative ML training process

• Highly tailored prediction for iterative job quality
• Allocate resources to maximize quality improvement

• SLAQ achieves better overall quality and end-to-end training time
19

0 100 200 300 400 500 600 700 800
7iPe (seconds)

0

20

40

60

80

100

6
ha

Ue
 o

f C
lu

st
eU

 C
3

8
s 

(%
)

%ottoP 50% Jobs 6econd 25% Jobs 7oS 25% Jobs

LDA
G%7

LLn5eg
6V0

0L3C
LRg5eg

6V03Rly
10-4

10-3

10-2

10-1

100

3
re

GL
cW

LR
n 

E
rr

Rr
 %

0.1
0.0

0.40.4
1.1

0.2

1.20.6

4.84.7 6.14.3

52.5

3.6

6WrDwPDn WeLghWeG Curve



Training iterations: runtime prediction

32 64 96 128 160 192 224 256
1umber oI Cores

101

102

103

104
Ite

ra
tio

n 
7i

m
e 

(s
)

2347 2307 2323 2318 2394 2398 2406 2406

10K 100K 10 100

• Iteration runtime: ! " #/%	
• Model complexity !, data size #, number of workers %
• Model update (i.e., size of Δ() is comparably much smaller

20


