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“Al is the new electricity.”

* Machine translation

« Recommendation system

« Autonomous driving

» Object detection and recognition

Supervised Unsupervised

Reinforcement




ML algorithms are approximate

ML model: a parametric transformation
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ML algorithms are approximate

ML model: a parametric transformation

* maps input variables X to output variables Y
* typically contains a set of parameters 6

« Quality: how well model maps input to the correct output
* Loss function: discrepancy of model output and ground truth



Training ML models: an iterative process
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 Training algorithms iteratively minimize a loss function
* E.g., stochastic gradient descent (SGD), L-BFGS




Training ML models: an iterative process
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 Quality improvement is subject to diminishing returns
* More than 80% of work done in 20% of time



Exploratory ML training: not a one-time effort

Adjust Feature Space
Collect Data

¥

Tune Hyperparameters

Extract Features

Restructure Models

 Train model multiple times for exploratory purposes
* Provide early feedback, direct model search for high quality models



How to schedule multiple training jobs on shared cluster?

» Key features of ML jobs Job #1 3 1 | Worker |
. Approximate , \ 2 3 || Worker |
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* Problem with resource fairness scheduling
« Jobs in early stage: could benefit a lot from additional resources
» Jobs almost converged: make only marginal improvement



SLAQ: quality-aware scheduling

* Intuition: in the context of approximate ML training, more resources should
be allocated to jobs that have the most potential for quality improvement
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Solution Overview

Normalize

quality metrics
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Normalizing quality metrics

Applicable to Al Comparable

Algorithms? Magnitudes? Known Range?  Predictable?

X

Accuracy / F1 Score / Area Under
Curve / Confusion Matrix / etc.
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Normalizing quality metrics

* Normalize change of loss values w.r.t. largest change so far
» Currently does not support some non-convex optimization algorithms
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Training iterations: loss prediction

* Previous work: offline profiling / analysis [Ermest NSDI 16] [CherryPick NSDI 17]
« Overhead for frequent offline analysis is huge

« Strawman: use last ALoss as prediction for future ALoss
« SLAQ: online prediction using weighted curve fitting
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Scheduling approximate ML training jobs

* Predict how much quality can be improved when assign X workers to jobs
« Reassign workers to maximize quality improvement

Scheduler
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Experiment setup

» Representative mix of training jobs with SpQﬂ( MLIib
« Compare against a work-conserving fair scheduler

Algorithm Acronym  Type Optimization Algorithm  Dataset

K-Means K-Means Clustering Lloyd Algorithm Synthetic

Logistic Regression LogReg Classification  Gradient Descent Epsilon [33]

Support Vector Machine SVM Classification  Gradient Descent Epsilon

SVM (polynomial kernel) SVMPoly = Classification  Gradient Descent MNIST [34]

Gradient Boosted Tree GBT Classification  Gradient Boosting Epsilon

GBT Regression GBTReg Regression Gradient Boosting YearPredictionMSD [35]
Multi-Layer Perceptron Classifier =~ MLPC Classification = L-BFGS Epsilon

Latent Dirichlet Allocation LDA Clustering EM / Online Algorithm Associated Press Corpus [36]
Linear Regression LinReg Regression L-BFGS YearPredictionMSD
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Evaluation:

resource allocation across jobs

* 160 training jobs submitted to cluster following Poisson distribution
« 25% jobs with high loss values
e 25% jobs with medium loss values
* 50% jobs with (almost converged)
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Evaluation: cluster-wide quality and time
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SLAQ Evaluation: Scalability

* Frequently reschedule and reconfigure in reaction to changes of progress

« Even with thousands of concurrent jobs, SLAQ makes rescheduling
decisions in just a few seconds
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Conclusion

« SLAQ leverages the approximate and iterative ML training process

 Highly tailored prediction for iterative job quality

 Allocate resources to maximize quality improvement

Prediction Error %
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« SLAQ achieves better overall quality and end-to-end training time
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Training iterations: runtime prediction

* |teration runtime: c-S/N
* Model complexity c, data size S, number of workers N
* Model update (i.e., size of Af) is comparably much smaller

&4 10K 24 100K B 1M 2] 10M

~~ 4

) F 2347 2307 2323 2318 2394 2398 2406 2406

E 103! \ \ N \ \ \ \R

i 10°F N1 N H  SRREE | R \ Rt N

c - \ N
2

O 10°F N Bl BN E """ Eg """ & rrrrr E rrrrrr &

= _

©

210 |

32 64 96 128 160 192 224 256
Number of Cores

20



