Live Video Analytics at Scale with
Approximation and Delay-Tolerance

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, Michael J. Freedman

B PRINCE P e
VUNIV ‘RSITY

[ i‘(: s o
'i" N ALBT

2 P

N

Microsoft



Video cameras are pervasive

NYPD Ae crniminillanecn natk +a
fight cﬁ)r(rli): ;Cameras and loT: Going from smart

to intelligenMicrosoft looks to stop bike crashes before they
() (in happen, testing Minority Report-style predictive
By Chris Francescani | NEW YOR CATHRINE F inte"igence

Having developed one of the BY LISA STIFFLER on October 14, 2015 at 1:00 pm
States, the New York Police CAn intelligent video can

in counterterrorism operation .

desired actions. The abi , _ o
Microsoft engineers and City of Bellevue planners have a sci-fi inspired strategy for
"The technology, having beert What makes the camera

9/M, has obvious applicationt curbing bike and pedestrian injuries on city streets: By using video analytics, they

NYPD spokesman. "That is in Imagine the video came want to predict and prevent crashes before they happen.
all - is our primary mission, Won the ground. Instead |

place, the intelligent cal
other necessary assistat Loewenherz, referring to the 2002 film in which Tom Cruise preemptively stops

rm

“This is like ‘Minority Report,' " said Bellevue senior transportation planner Franz

to action. crime. “We're trying to get out in front of the collisions. We can take a corrective
measure before someone gets hurt.”




Video analytics queries

Intelligent Traffic System AMBER Alert
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Electronic Toll Collection  Video Doorbell



Video query: a pipeline of transforms

 Vision algorithms chained together
« Example: traffic counter pipeline

transform transform transform transform
decode detect object track object count object




Video gueries are expensive in resource usage

« Best car tracker!'l — 1 fps on an 8-core CPU
« DNN for object classification ¥/ — 30GFlops

j R zt

* When processing thousands of video streams in multi-tenant clusters
* How to reduce processing cost of a query?
 How to manage resources efficiently across queries?

transform ; transform

decode count object

['VOT Challenge 2015 Results.
[21 Simonyan et al. CVPR abs/1409.1556, 2014
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Vision algorithms are intrinsically approximate

« Knobs: parameters / implementation choices for transforms
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* License plate reader — window size
e Car tracker — mapping metric
* Object classifier — DNN model
* Query configuration: a combination of knob values



Knobs impact quality and resource usage
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Knobs impact quality and resource usage
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Knobs impact quality and resource usage

License Plate Reader
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« Orders of magnitude cheaper resource demand for little quality drop

* No analytical models to predict resource-quality tradeoff
 Different from approximate SQL queries



Diverse quality and lag requirements

Lag: time difference between frame arrival and frame processing

N
_% ,“ AMBER &
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Toll Collection  Intelligent Traffic ~AMBER Alert

Quality? High Moderate High

Lag? Hours Few Seconds Few Seconds
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Decide configuration and resource allocation to
maximize quality and minimize lag
within the resource capacity




Video analytics framework:

1. Many knobs — large configuration space

* No known analytical models to predict quality and resource impact
2. Diverse requirements on quality and lag

« Hard to configure and allocate resources jointly across queries




VideoStorm: Solution Overview

query resource-quality Scheduler Worker
profile

| offline L online

utility function




VideoStorm: Solution Overview

Trades off
quality andlag §
across querie -
-1 1 1
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| offline L online
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VideoStorm: Solution Overview

query resource-quality
profile

| offline Ll online




Offline: query profiling

* Profile: configuration = resource, quality
« Ground-truth: labeled dataset or results from golden configuration
« Explore configuration space, compute average resource and quality
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ammm more efficient

Is strictly
better than
& in quality
and resource
efficiency

16



Offline: Pareto boundary of configuration space

. optimal configurations in resource efficiency and quality
« Cannot further increase one without reducing the other
* Orders of magnitude reduction in config. search space for scheduling
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VideoStorm: Solution Overview

1 1 1
= 111
query resource-quality Scheduler Worker
profile

utility function

offline L online



Online: utility function and scheduling

« Utility function: encode goals and sensitivities of quality and lag
» Users set required quality and tolerable lag

« Reward additional quality, penalize higher lag f higher quality

* Schedule for two natural goals: —

* Maximize the minimum utility — (max-min) fairness
 Maximize the total utility — overall performance higher lag

* Allow lag accumulation during resource shortage, then catch up
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Online: scheduling approximate video queries

* Queries: blue and orange Fair | Quality-aware
(tolerate 8s lag)

Resource (cores)
Resource (cores)

« Fair scheduler: best
configurations w/o lag

 Quality-aware scheduler:
allow lag — catch up
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Additional Enhancements

« Handle incorrect resource profiles
* Profiled resource demand might not correspond to actual queries
* Robust to errors in query profiles

* Query placement and migration
» Better utilization, load balancing and lag spreading

* Hierarchical scheduling
* Cluster and machine level scheduling
 Better efficiency and scalability
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VideoStorm Evaluation Setup

« Platform:
* Microsoft Azure cluster VideoStorm Manager

« Each worker contains 4 cores Profiler + Scheduler

of the 2.4GHz Intel Xeon
processor and 14GB RAM

* Four types of vision queries:
 license plate reader
e car counter
 DNN classifier
* object tracker
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Expériment Video

« Operational traffic cameras in Bellevue and Seattle

=~ + 14 — 30 frames per second, 240P — 1080P resolution
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Resource allocation during burst of queries

® [ Lag Goal=300s [ Lag Goal=20s [ High-Quality, Lag Goal=20s
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Burst of 150 seconds (50 — 200):
@ 200 LPR queries (AMBER Alert)
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Resource allocation during burst of queries
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« Compare to a fair scheduler with varying burst duration:
« Quality improvement: up to 80%
« Lag reduction: up to 7x

Qualit
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* VideoStorm scheduler:
significantly delay @
run @ with lower quality
(3) dominate resource allocation
All meet quality and lag goals 100 150
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VideoStorm Scalability

* Frequently reschedule and reconfigure in reaction to changes of queries

« Even with thousands of queries, VideoStorm makes rescheduling
decisions in just a few seconds
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VideoStorm: account for errors in query profiles

* Errors in profile on resource demands
* QOver/under allocate resources — miss quality and lag goals!

« Example: 3 copies of same query, should get same allocation
* Profiled resource synthetically doubled, and unchanged

* VideoStorm keeps track of mis-estimation factor u — multiplicative error
between the profiled demand and actual usage

— Accurate

200 300 200 300 ' 200 300 400
Time (seconds) Time (seconds) Time (seconds)
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Conclusion

VideoStorm is a video analytics system that scales to processing
thousands of video streams in large clusters

] Lag Goal=300s [] Lag Goal=20s [ High-Quality, Lag Goal=20s

10 |

oo T O 0 \IIII ) i

o H“H““ |||| “ Il
10 100 1000 Il 150

0. |
0. 2
resource demand [CPU cores, log scale] Time (seconds)

Offline profiler: efficiently estimates resource-quality profiles
Online scheduler: optimizes jointly for the quality and lag of queries
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VideoStorm is currently depf’" in Be ffic Department, and

soon will be deployed |n a;;:.f__

28



